<< Chapter < Page | Chapter >> Page > |
The transition matrix P for a homogeneous Markov chain is as follows (in m-file npr16_08.m ):
Increasing power P n show the probability of being in states 6, 7 go to zero. These states cannot be reached from any of the other states.
The transition matrix P for a homogeneous Markov chain is as follows (in m-file npr16_09.m ):
Examination of P 16 suggests sets and of states form subchains. Rearrangement of P may be done as follows:
PA = P([2 7 3 4 6 1 5], [2 7 3 4 6 1 5])
PA =0.6000 0.4000 0 0 0 0 0
0.5000 0.5000 0 0 0 0 00 0 0.2000 0.5000 0.3000 0 0
0 0 0.6000 0.1000 0.3000 0 00 0 0.2000 0.7000 0.1000 0 0
0.2000 0.1000 0.1000 0.3000 0 0.1000 0.20000.2000 0.2000 0.1000 0.2000 0.1000 0.2000 0
PA16 = PA^16PA16 =
0.5556 0.4444 0 0 0 0 00.5556 0.4444 0 0 0 0 0
0 0 0.3571 0.3929 0.2500 0 00 0 0.3571 0.3929 0.2500 0 0
0 0 0.3571 0.3929 0.2500 0 00.2455 0.1964 0.1993 0.2193 0.1395 0.0000 0.0000
0.2713 0.2171 0.1827 0.2010 0.1279 0.0000 0.0000
It is clear that original states 1 and 5 are transient.
Use the m-procedure inventory1 (in m-file inventory1.m ) to obtain the transition matrix for maximum stock reorder point , and demand Poisson(4).
inventory1
Enter value M of maximum stock 8Enter value m of reorder point 3
Enter row vector of demand values 0:20Enter demand probabilities ipoisson(4,0:20)
Result is in matrix Pp0 = [0 0 0 0 0 0 1 0 0];p1 = p0*P
p1 =Columns 1 through 7
0.2149 0.1563 0.1954 0.1954 0.1465 0.0733 0.0183Columns 8 through 9
0 0p3 = p0*P^3
p3 =Columns 1 through 7
0.2494 0.1115 0.1258 0.1338 0.1331 0.1165 0.0812Columns 8 through 9
0.0391 0.0096p5 = p0*P^5
p5 =Columns 1 through 7
0.2598 0.1124 0.1246 0.1311 0.1300 0.1142 0.0799Columns 8 through 9
0.0386 0.0095a = abs(eig(P))'
a =Columns 1 through 7
1.0000 0.4427 0.1979 0.0284 0.0058 0.0005 0.0000Columns 8 through 9
0.0000 0.0000a(2)^16
ans =2.1759e-06 % Convergence to at least five decimals for P^16
pinf = p0*P^16 % Use arbitrary p0, pinf approx p0*P^16pinf = Columns 1 through 7
0.2622 0.1132 0.1251 0.1310 0.1292 0.1130 0.0789Columns 8 through 9
0.0380 0.0093
Notification Switch
Would you like to follow the 'Applied probability' conversation and receive update notifications?