<< Chapter < Page Chapter >> Page >

Conductors and insulators

All atoms are electrically neutral i.e. they have the same amounts of negative and positive charge inside them. By convention, the electrons carry negative charge and the protons carrypositive charge. The basic unit of charge, called the elementary charge, e , is the amount of charge carried by one electron.

All the matter and materials on earth are made up of atoms. Some materials allow electrons to move relatively freelythrough them (e.g. most metals, the human body). These materials are called conductors .

Other materials do not allow the charge carriers, the electrons, to move through them (e.g. plastic, glass).The electrons are bound to the atoms in the material. These materials are called non-conductors or insulators .

If an excess of charge is placed on an insulator, it will stay where it is put and there will be a concentration of charge inthat area of the object. However, if an excess of charge is placed on a conductor, the like charges will repel each otherand spread out over the outside surface of the object. When two conductors are made to touch, the total charge on them is shared between thetwo. If the two conductors are identical, then each conductor will be left with half of the total charge.

Charge and electrons

The basic unit of charge, namely the elementary charge is carried by theelectron (equal to 1.602 × 10 - 19 C!). In a conducting material (e.g. copper), when the atoms bond to form the material, some of the outermost, loosely boundelectrons become detached from the individual atoms and so become free to move around. The charge carried by these electrons canmove around in the material. In insulators, there are very few, if any, free electrons and so the charge cannot move around in thematerial.

Interesting fact

In 1909 Robert Millikan and Harvey Fletcher measured the charge on an electron. This experiment is now known as Millikan's oil drop experiment. Millikan and Fletcher sprayed oil droplets into the space between two charged plates and used what they knew about forces and in particular the electric force to determine the charge on an electron.

I have 2 charged metal conducting spheres which are identical except for having different charge. Sphere A has a charge of -5 nC and sphere B has a charge of -3 nC. I then bring the spheres together so that they touch each other. Afterwards I move the two spheres apart so that they are no longer touching.

  1. What happens to the charge on the two spheres?
  2. What is the final charge on each sphere?
  1. We have two identical negatively charged conducting spheres which are brought together to touch each other and then taken apart again. We need to explain what happens to the charge on each sphere and what the final charge on each sphere is after they are moved apart.

  2. We know that the charge carriers in conductors are free to move around and that charge on a conductor spreads itself out on the surface of the conductor.

    1. When the two conducting spheres are brought together to touch, it is as though they become one single big conductor and the total charge of the two spheres spreads out across the whole surface of the touching spheres. When the spheres are moved apart again, each one is left with half of the total original charge.
    2. Before the spheres touch, the total charge is: -5 nC + (-3) nC = -8 nC. When they touch they share out the -8 nC across their whole surface. When they are removed from each other, each is left with half of the original charge:
      - 8 nC / 2 = - 4 nC
      on each sphere.
Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Siyavula textbooks: grade 10 physical science. OpenStax CNX. Aug 29, 2011 Download for free at http://cnx.org/content/col11245/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: grade 10 physical science' conversation and receive update notifications?

Ask