<< Chapter < Page Chapter >> Page >
  • Determine the maximum speed of an oscillating system.

To study the energy of a simple harmonic oscillator, we first consider all the forms of energy it can have We know from Hooke’s Law: Stress and Strain Revisited that the energy stored in the deformation of a simple harmonic oscillator is a form of potential energy given by:

PE el = 1 2 kx 2 . size 12{"PE" size 8{"el"}= { {1} over {2} } ital "kx" rSup { size 8{2} } } {}

Because a simple harmonic oscillator has no dissipative forces, the other important form of energy is kinetic energy KE size 12{ ital "KE"} {} . Conservation of energy for these two forms is:

KE + PE el = constant size 12{ ital "KE"+ ital "PE" rSub { size 8{e1} } ="constant"} {}

or

1 2 mv 2 + 1 2 kx 2 = constant. size 12{ { {1} over {2} } ital "mv" rSup { size 8{2} } + { {1} over {2} } ital "kx" rSup { size 8{2} } ="constant"} {}

This statement of conservation of energy is valid for all simple harmonic oscillators, including ones where the gravitational force plays a role

Namely, for a simple pendulum we replace the velocity with v = size 12{v=Lω} {} , the spring constant with k = mg / L size 12{k= ital "mg"/L} {} , and the displacement term with x = size 12{x=Lθ} {} . Thus

1 2 mL 2 ω 2 + 1 2 mgL θ 2 = constant. size 12{ { {1} over {2} } ital "mL" rSup { size 8{2} } ω rSup { size 8{2} } + { {1} over {2} } ital "mgL"θ rSup { size 8{2} } ="constant"} {}

In the case of undamped simple harmonic motion, the energy oscillates back and forth between kinetic and potential, going completely from one to the other as the system oscillates. So for the simple example of an object on a frictionless surface attached to a spring, as shown again in [link] , the motion starts with all of the energy stored in the spring. As the object starts to move, the elastic potential energy is converted to kinetic energy, becoming entirely kinetic energy at the equilibrium position. It is then converted back into elastic potential energy by the spring, the velocity becomes zero when the kinetic energy is completely converted, and so on. This concept provides extra insight here and in later applications of simple harmonic motion, such as alternating current circuits.

Figure a shows a spring on a frictionless surface attached to a bar or wall from the left side, and on the right side of it there’s an object attached to it with mass m, its amplitude is given by X, and x equal to zero at the equilibrium level. Force F is applied to it from the right side, shown with left direction pointed red arrow and velocity v is equal to zero. A direction point showing the north and west direction is also given alongside this figure as well as with other four figures. The energy given here for the object is given according to the velocity. In figure b, after the force has been applied, the object moves to the left compressing the spring a bit, and the displaced area of the object from its initial point is shown in sketched dots. F is equal to zero and the V is max in negative direction. The energy given here for the object is given according to the velocity. In figure c, the spring has been compressed to the maximum level, and the amplitude is negative x. Now the direction of force changes to the rightward direction, shown with right direction pointed red arrow and the velocity v zero. The energy given here for the object is given according to the velocity.                In figure d, the spring is shown released from the compressed level and the object has moved toward the right side up to the equilibrium level. F is zero, and the velocity v is maximum. The energy given here for the object is given according to the velocity.               In figure e, the spring has been stretched loose to the maximum level and the object has moved to the far right. Now again the velocity here is equal to zero and the direction of force again is to the left hand side, shown here as F is equal to zero. The energy given here for the object is given according to the velocity.
The transformation of energy in simple harmonic motion is illustrated for an object attached to a spring on a frictionless surface.

The conservation of energy principle can be used to derive an expression for velocity v size 12{v} {} . If we start our simple harmonic motion with zero velocity and maximum displacement ( x = X size 12{x=X} {} ), then the total energy is

1 2 kX 2 . size 12{ { {1} over {2} } ital "kX" rSup { size 8{2} } } {}

This total energy is constant and is shifted back and forth between kinetic energy and potential energy, at most times being shared by each. The conservation of energy for this system in equation form is thus:

1 2 mv 2 + 1 2 kx 2 = 1 2 kX 2 . size 12{ { {1} over {2} } ital "mv" rSup { size 8{2} } + { {1} over {2} } ital "kx" rSup { size 8{2} } = { {1} over {2} } ital "kX" rSup { size 8{2} } } {}

Solving this equation for v size 12{v} {} yields:

v = ± k m X 2 x 2 . size 12{v= +- sqrt { { {k} over {m} } left (X rSup { size 8{2} } - x rSup { size 8{2} } right )} } {}

Manipulating this expression algebraically gives:

v = ± k m X 1 x 2 X 2 size 12{v= +- sqrt { { {k} over {m} } } X sqrt {1 - { {x rSup { size 8{2} } } over {X rSup { size 8{2} } } } } } {}

and so

v = ± v max 1 x 2 X 2 , size 12{v= +- v size 8{"max" sqrt {1 - { {x rSup { size 8{2} } } over {X rSup { size 8{2} } } } } }} {}

where

v max = k m X . size 12{v size 8{"max"}= sqrt { { {k} over {m} } } X} {}

From this expression, we see that the velocity is a maximum ( v max ) at x = 0 size 12{x=0} {} , as stated earlier in v t = v max sin t T . Notice that the maximum velocity depends on three factors. Maximum velocity is directly proportional to amplitude. As you might guess, the greater the maximum displacement the greater the maximum velocity. Maximum velocity is also greater for stiffer systems, because they exert greater force for the same displacement. This observation is seen in the expression for v max ; it is proportional to the square root of the force constant k . Finally, the maximum velocity is smaller for objects that have larger masses, because the maximum velocity is inversely proportional to the square root of m . For a given force, objects that have large masses accelerate more slowly.

Questions & Answers

I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics: physics of california. OpenStax CNX. Sep 30, 2013 Download for free at http://legacy.cnx.org/content/col11577/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics: physics of california' conversation and receive update notifications?

Ask