<< Chapter < Page Chapter >> Page >
  • Explain the process by which electric signals are transmitted along a neuron.
  • Explain the effects myelin sheaths have on signal propagation.
  • Explain what the features of an ECG signal indicate.

Nerve conduction

Electric currents in the vastly complex system of billions of nerves in our body allow us to sense the world, control parts of our body, and think. These are representative of the three major functions of nerves. First, nerves carry messages from our sensory organs and others to the central nervous system, consisting of the brain and spinal cord. Second, nerves carry messages from the central nervous system to muscles and other organs. Third, nerves transmit and process signals within the central nervous system. The sheer number of nerve cells and the incredibly greater number of connections between them makes this system the subtle wonder that it is. Nerve conduction is a general term for electrical signals carried by nerve cells. It is one aspect of bioelectricity    , or electrical effects in and created by biological systems.

Nerve cells, properly called neurons , look different from other cells—they have tendrils, some of them many centimeters long, connecting them with other cells. (See [link] .) Signals arrive at the cell body across synapses or through dendrites , stimulating the neuron to generate its own signal, sent along its long axon to other nerve or muscle cells. Signals may arrive from many other locations and be transmitted to yet others, conditioning the synapses by use, giving the system its complexity and its ability to learn.

The figure describes a neuron. The neuron has a cell body with a nucleus at the center represented by a circle. The cell body is surrounded by many thin, branching projections called dendrites, represented by ribbon-like structures. The ends of some of these dendrites are shown connected to the ends of dendrites from another neuron at junctions called synapses. The cell body of the neuron also has a long projection called an axon, represented as a vertical tube reaching downward and ending with thin projections inside a muscle fiber, represented by a tubular structure. The ends of the axon are called nerve endings. The axon is covered with myelin sheaths, each of which is one millimeter in length. The myelin sheaths are separated by gaps, called nodes of Ranvier, each of length zero point zero zero one millimeter.
A neuron with its dendrites and long axon. Signals in the form of electric currents reach the cell body through dendrites and across synapses, stimulating the neuron to generate its own signal sent down the axon. The number of interconnections can be far greater than shown here.

The method by which these electric currents are generated and transmitted is more complex than the simple movement of free charges in a conductor, but it can be understood with principles already discussed in this text. The most important of these are the Coulomb force and diffusion.

[link] illustrates how a voltage (potential difference) is created across the cell membrane of a neuron in its resting state. This thin membrane separates electrically neutral fluids having differing concentrations of ions, the most important varieties being Na + size 12{"Na" rSup { size 8{+{}} } } {} , K + size 12{"K" rSup { size 8{+{}} } } {} , and Cl - size 12{"Cl" rSup { size 8{ +- {}} } } {} (these are sodium, potassium, and chlorine ions with single plus or minus charges as indicated). As discussed in Molecular Transport Phenomena: Diffusion, Osmosis, and Related Processes , free ions will diffuse from a region of high concentration to one of low concentration. But the cell membrane is semipermeable    , meaning that some ions may cross it while others cannot. In its resting state, the cell membrane is permeable to K + size 12{"K" rSup { size 8{+{}} } } {} and Cl - size 12{"Cl" rSup { size 8{ +- {}} } } {} , and impermeable to Na + size 12{"Na" rSup { size 8{+{}} } } {} . Diffusion of K + size 12{"K" rSup { size 8{+{}} } } {} and Cl - size 12{"Cl" rSup { size 8{ +- {}} } } {} thus creates the layers of positive and negative charge on the outside and inside of the membrane. The Coulomb force prevents the ions from diffusing across in their entirety. Once the charge layer has built up, the repulsion of like charges prevents more from moving across, and the attraction of unlike charges prevents more from leaving either side. The result is two layers of charge right on the membrane, with diffusion being balanced by the Coulomb force. A tiny fraction of the charges move across and the fluids remain neutral (other ions are present), while a separation of charge and a voltage have been created across the membrane.

Questions & Answers

what are components of cells
ofosola Reply
twugzfisfjxxkvdsifgfuy7 it
Sami
58214993
Sami
what is a salt
John
the difference between male and female reproduction
John
what is computed
IBRAHIM Reply
what is biology
IBRAHIM
what is the full meaning of biology
IBRAHIM
what is biology
Jeneba
what is cell
Kuot
425844168
Sami
what is cytoplasm
Emmanuel Reply
structure of an animal cell
Arrey Reply
what happens when the eustachian tube is blocked
Puseletso Reply
what's atoms
Achol Reply
discuss how the following factors such as predation risk, competition and habitat structure influence animal's foraging behavior in essay form
Burnet Reply
cell?
Kuot
location of cervical vertebra
KENNEDY Reply
What are acid
Sheriff Reply
define biology infour way
Happiness Reply
What are types of cell
Nansoh Reply
how can I get this book
Gatyin Reply
what is lump
Chineye Reply
what is cell
Maluak Reply
what is biology
Maluak
what is vertibrate
Jeneba
what's cornea?
Majak Reply
what are cell
Achol
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics 101. OpenStax CNX. Jan 07, 2013 Download for free at http://legacy.cnx.org/content/col11479/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics 101' conversation and receive update notifications?

Ask