<< Chapter < Page Chapter >> Page >
  • Calculate displacement of an object that is not accelerating, given initial position and velocity.
  • Calculate final velocity of an accelerating object, given initial velocity, acceleration, and time.
  • Calculate displacement and final position of an accelerating object, given initial position, initial velocity, time, and acceleration.
Four men racing up a river in their kayaks.
Kinematic equations can help us describe and predict the motion of moving objects such as these kayaks racing in Newbury, England. (credit: Barry Skeates, Flickr)

We might know that the greater the acceleration of, say, a car moving away from a stop sign, the greater the displacement in a given time. But we have not developed a specific equation that relates acceleration and displacement. In this section, we develop some convenient equations for kinematic relationships, starting from the definitions of displacement, velocity, and acceleration already covered.

Notation: t , x , v , a

First, let us make some simplifications in notation. Taking the initial time to be zero, as if time is measured with a stopwatch, is a great simplification. Since elapsed time is Δ t = t f t 0 , taking t 0 = 0 means that Δ t = t f , the final time on the stopwatch. When initial time is taken to be zero, we use the subscript 0 to denote initial values of position and velocity. That is, x 0 is the initial position and v 0 is the initial velocity . We put no subscripts on the final values. That is, t is the final time , x is the final position , and v is the final velocity . This gives a simpler expression for elapsed time—now, Δ t = t . It also simplifies the expression for displacement, which is now Δ x = x x 0 . Also, it simplifies the expression for change in velocity, which is now Δ v = v v 0 . To summarize, using the simplified notation, with the initial time taken to be zero,

Δ t = t Δ x = x x 0 Δ v = v v 0

where the subscript 0 denotes an initial value and the absence of a subscript denotes a final value in whatever motion is under consideration.

We now make the important assumption that acceleration is constant . This assumption allows us to avoid using calculus to find instantaneous acceleration. Since acceleration is constant, the average and instantaneous accelerations are equal. That is,

a - = a = constant , size 12{ { bar {a}}=a="constant"} {}

so we use the symbol a size 12{a} {} for acceleration at all times. Assuming acceleration to be constant does not seriously limit the situations we can study nor degrade the accuracy of our treatment. For one thing, acceleration is constant in a great number of situations. Furthermore, in many other situations we can accurately describe motion by assuming a constant acceleration equal to the average acceleration for that motion. Finally, in motions where acceleration changes drastically, such as a car accelerating to top speed and then braking to a stop, the motion can be considered in separate parts, each of which has its own constant acceleration.

Solving for displacement ( Δ x ) and final position ( x size 12{x} {} ) from average velocity when acceleration ( a size 12{a} {} ) is constant

To get our first two new equations, we start with the definition of average velocity:

v - = Δ x Δ t . size 12{ { bar {v}}= { {Δx} over {Δt} } "." } {}

Substituting the simplified notation for Δ x and Δ t yields

v - = x x 0 t . size 12{ { bar {v}}= { {x - x rSub { size 8{0} } } over {t} } "." } {}

Solving for x size 12{x} {} yields

x = x 0 + v - t , size 12{x=x rSub { size 8{0} } + { bar {v}}t" " \( "constant a" \) ,} {}

where the average velocity is

v - = v 0 + v 2 ( constant a ) . size 12{ { bar {v}}= { {v rSub { size 8{0} } +v} over {2} } " " \( "constant "a \) "." } {}

Questions & Answers

1. Discuss the processes involved during exchange of fluids between intra and extracellular space.
Mustapha Reply
what are components of cells
ofosola Reply
twugzfisfjxxkvdsifgfuy7 it
Sami
58214993
Sami
what is a salt
John
the difference between male and female reproduction
John
what is computed
IBRAHIM Reply
what is biology
IBRAHIM
what is the full meaning of biology
IBRAHIM
what is biology
Jeneba
what is cell
Kuot
425844168
Sami
what is biology
Inenevwo
what is cytoplasm
Emmanuel Reply
structure of an animal cell
Arrey Reply
what happens when the eustachian tube is blocked
Puseletso Reply
what's atoms
Achol Reply
discuss how the following factors such as predation risk, competition and habitat structure influence animal's foraging behavior in essay form
Burnet Reply
cell?
Kuot
location of cervical vertebra
KENNEDY Reply
What are acid
Sheriff Reply
define biology infour way
Happiness Reply
What are types of cell
Nansoh Reply
how can I get this book
Gatyin Reply
what is lump
Chineye Reply
what is cell
Maluak Reply
what is biology
Maluak
what is vertibrate
Jeneba
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics 105: adventures in physics. OpenStax CNX. Dec 02, 2015 Download for free at http://legacy.cnx.org/content/col11916/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics 105: adventures in physics' conversation and receive update notifications?

Ask