<< Chapter < Page Chapter >> Page >

Extracellular matrix of animal cells

Most animal cells release materials into the extracellular space. The primary components of these materials are glycoproteins and the protein collagen. Collectively, these materials are called the extracellular matrix    ( [link] ). Not only does the extracellular matrix hold the cells together to form a tissue, but it also allows the cells within the tissue to communicate with each other.

This illustration shows the plasma membrane. Embedded in the plasma membrane are integral membrane proteins called integrins. On the exterior of the cell is a vast network of collagen fibers, which are attached to the integrins via a protein called fibronectin. Proteoglycan complexes also extend from the plasma membrane into the extracellular matrix. A magnified view shows that each proteoglycan complex is composed of a polysaccharide core. Proteins branch from this core, and carbohydrates branch from the proteins. The inside of the cytoplasmic membrane is lined with microfilaments of the cytoskeleton.
The extracellular matrix consists of a network of substances secreted by cells.

Blood clotting provides an example of the role of the extracellular matrix in cell communication. When the cells lining a blood vessel are damaged, they display a protein receptor called tissue factor. When tissue factor binds with another factor in the extracellular matrix, it causes platelets to adhere to the wall of the damaged blood vessel, stimulates adjacent smooth muscle cells in the blood vessel to contract (thus constricting the blood vessel), and initiates a series of steps that stimulate the platelets to produce clotting factors.

Intercellular junctions

Cells can also communicate with each other by direct contact, referred to as intercellular junctions. There are some differences in the ways that plant and animal cells do this. Plasmodesmata (singular = plasmodesma) are junctions between plant cells, whereas animal cell contacts include tight and gap junctions, and desmosomes.

In general, long stretches of the plasma membranes of neighboring plant cells cannot touch one another because they are separated by the cell walls surrounding each cell. Plasmodesmata are numerous channels that pass between the cell walls of adjacent plant cells, connecting their cytoplasm and enabling signal molecules and nutrients to be transported from cell to cell ( [link] a ).

Part a shows two plant cells side-by-side. A channel, or plasmodesma, in the cell wall allows fluid and small molecules to pass from the cytoplasm of one cell to the cytoplasm of another. Part b shows two cell membranes joined together by a matrix of tight junctions. Part c shows two cells fused together by a desmosome. Cadherins extend out from each cell and join the two cells together. Intermediate filaments connect to cadherins on the inside of the cell. Part d shows two cells joined together with protein pores called gap junctions that allow water and small molecules to pass through.
There are four kinds of connections between cells. (a) A plasmodesma is a channel between the cell walls of two adjacent plant cells. (b) Tight junctions join adjacent animal cells. (c) Desmosomes join two animal cells together. (d) Gap junctions act as channels between animal cells. (credit b, c, d: modification of work by Mariana Ruiz Villareal)

A tight junction    is a watertight seal between two adjacent animal cells ( [link] b ). Proteins hold the cells tightly against each other. This tight adhesion prevents materials from leaking between the cells. Tight junctions are typically found in the epithelial tissue that lines internal organs and cavities, and composes most of the skin. For example, the tight junctions of the epithelial cells lining the urinary bladder prevent urine from leaking into the extracellular space.

Also found only in animal cells are desmosomes , which act like spot welds between adjacent epithelial cells ( [link] c ). They keep cells together in a sheet-like formation in organs and tissues that stretch, like the skin, heart, and muscles.

Gap junctions in animal cells are like plasmodesmata in plant cells in that they are channels between adjacent cells that allow for the transport of ions, nutrients, and other substances that enable cells to communicate ( [link] d ). Structurally, however, gap junctions and plasmodesmata differ.

Components of Prokaryotic and Eukaryotic Cells and Their Functions
Cell Component Function Present in Prokaryotes? Present in Animal Cells? Present in Plant Cells?
Plasma membrane Separates cell from external environment; controls passage of organic molecules, ions, water, oxygen, and wastes into and out of the cell Yes Yes Yes
Cytoplasm Provides structure to cell; site of many metabolic reactions; medium in which organelles are found Yes Yes Yes
Nucleoid Location of DNA Yes No No
Nucleus Cell organelle that houses DNA and directs synthesis of ribosomes and proteins No Yes Yes
Ribosomes Protein synthesis Yes Yes Yes
Mitochondria ATP production/cellular respiration No Yes Yes
Peroxisomes Oxidizes and breaks down fatty acids and amino acids, and detoxifies poisons No Yes Yes
Vesicles and vacuoles Storage and transport; digestive function in plant cells No Yes Yes
Centrosome Unspecified role in cell division in animal cells; organizing center of microtubules in animal cells No Yes No
Lysosomes Digestion of macromolecules; recycling of worn-out organelles No Yes No
Cell wall Protection, structural support and maintenance of cell shape Yes, primarily peptidoglycan in bacteria but not Archaea No Yes, primarily cellulose
Chloroplasts Photosynthesis No No Yes
Endoplasmic reticulum Modifies proteins and synthesizes lipids No Yes Yes
Golgi apparatus Modifies, sorts, tags, packages, and distributes lipids and proteins No Yes Yes
Cytoskeleton Maintains cell’s shape, secures organelles in specific positions, allows cytoplasm and vesicles to move within the cell, and enables unicellular organisms to move independently Yes Yes Yes
Flagella Cellular locomotion Some Some No, except for some plant sperm.
Cilia Cellular locomotion, movement of particles along extracellular surface of plasma membrane, and filtration No Some No

This table provides the components of prokaryotic and eukaryotic cells and their respective functions.

Section summary

Like a prokaryotic cell, a eukaryotic cell has a plasma membrane, cytoplasm, and ribosomes, but a eukaryotic cell is typically larger than a prokaryotic cell, has a true nucleus (meaning its DNA is surrounded by a membrane), and has other membrane-bound organelles that allow for compartmentalization of functions. The plasma membrane is a phospholipid bilayer embedded with proteins. The nucleolus within the nucleus is the site for ribosome assembly. Ribosomes are found in the cytoplasm or are attached to the cytoplasmic side of the plasma membrane or endoplasmic reticulum. They perform protein synthesis. Mitochondria perform cellular respiration and produce ATP. Peroxisomes break down fatty acids, amino acids, and some toxins. Vesicles and vacuoles are storage and transport compartments. In plant cells, vacuoles also help break down macromolecules.

Animal cells also have a centrosome and lysosomes. The centrosome has two bodies, the centrioles, with an unknown role in cell division. Lysosomes are the digestive organelles of animal cells.

Plant cells have a cell wall, chloroplasts, and a central vacuole. The plant cell wall, whose primary component is cellulose, protects the cell, provides structural support, and gives shape to the cell. Photosynthesis takes place in chloroplasts. The central vacuole expands, enlarging the cell without the need to produce more cytoplasm.

The endomembrane system includes the nuclear envelope, the endoplasmic reticulum, Golgi apparatus, lysosomes, vesicles, as well as the plasma membrane. These cellular components work together to modify, package, tag, and transport membrane lipids and proteins.

The cytoskeleton has three different types of protein elements. Microfilaments provide rigidity and shape to the cell, and facilitate cellular movements. Intermediate filaments bear tension and anchor the nucleus and other organelles in place. Microtubules help the cell resist compression, serve as tracks for motor proteins that move vesicles through the cell, and pull replicated chromosomes to opposite ends of a dividing cell. They are also the structural elements of centrioles, flagella, and cilia.

Animal cells communicate through their extracellular matrices and are connected to each other by tight junctions, desmosomes, and gap junctions. Plant cells are connected and communicate with each other by plasmodesmata.

Art connections

[link] What structures does a plant cell have that an animal cell does not have? What structures does an animal cell have that a plant cell does not have?

[link] Plant cells have plasmodesmata, a cell wall, a large central vacuole, chloroplasts, and plastids. Animal cells have lysosomes and centrosomes.

[link] Why does the cis face of the Golgi not face the plasma membrane?

[link] Because that face receives chemicals from the ER, which is toward the center of the cell.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Concepts in biology (biology 1060 tri-c). OpenStax CNX. Jan 15, 2014 Download for free at https://legacy.cnx.org/content/col11617/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concepts in biology (biology 1060 tri-c)' conversation and receive update notifications?

Ask