<< Chapter < Page | Chapter >> Page > |
The silver is precipitated from the cyanide solution by the addition of either zinc or iron(II) ions, which serves as the reducing agent:
Explain why oxygen must be present to carry out the reaction. Why does the reaction not occur as:
The carbon is converted into CO, which is the reducing agent that accepts electrons so that iron(III) can be reduced to iron(0).
The bonding in the simple compounds of the transition elements ranges from ionic to covalent. In their lower oxidation states, the transition elements form ionic compounds; in their higher oxidation states, they form covalent compounds or polyatomic ions. The variation in oxidation states exhibited by the transition elements gives these compounds a metal-based, oxidation-reduction chemistry. The chemistry of several classes of compounds containing elements of the transition series follows.
Anhydrous halides of each of the transition elements can be prepared by the direct reaction of the metal with halogens. For example:
Heating a metal halide with additional metal can be used to form a halide of the metal with a lower oxidation state:
The stoichiometry of the metal halide that results from the reaction of the metal with a halogen is determined by the relative amounts of metal and halogen and by the strength of the halogen as an oxidizing agent. Generally, fluorine forms fluoride-containing metals in their highest oxidation states. The other halogens may not form analogous compounds.
In general, the preparation of stable water solutions of the halides of the metals of the first transition series is by the addition of a hydrohalic acid to carbonates, hydroxides, oxides, or other compounds that contain basic anions. Sample reactions are:
Notification Switch
Would you like to follow the 'Ut austin - principles of chemistry' conversation and receive update notifications?