<< Chapter < Page Chapter >> Page >

Third, the mixture is less orderly, or to use another term, less structured. Rather than having two masses at different temperatures and with different distributions of molecular speeds, we now have a single mass with a uniform temperature.

These three results—entropy, unavailability of energy, and disorder—are not only related but are in fact essentially equivalent.

Life, evolution, and the second law of thermodynamics

Some people misunderstand the second law of thermodynamics, stated in terms of entropy, to say that the process of the evolution of life violates this law. Over time, complex organisms evolved from much simpler ancestors, representing a large decrease in entropy of the Earth’s biosphere. It is a fact that living organisms have evolved to be highly structured, and much lower in entropy than the substances from which they grow. But it is always possible for the entropy of one part of the universe to decrease, provided the total change in entropy of the universe increases. In equation form, we can write this as

Δ S tot = Δ S syst + Δ S envir > 0. size 12{DS rSub { size 8{"tot"} } =DS rSub { size 8{"syst"} } +DS rSub { size 8{"envir"} }>0} {}

Thus Δ S syst size 12{DS rSub { size 8{"syst"} } } {} can be negative as long as Δ S envir size 12{DS rSub { size 8{"envir"} } } {} is positive and greater in magnitude.

How is it possible for a system to decrease its entropy? Energy transfer is necessary. If I pick up marbles that are scattered about the room and put them into a cup, my work has decreased the entropy of that system. If I gather iron ore from the ground and convert it into steel and build a bridge, my work has decreased the entropy of that system. Energy coming from the Sun can decrease the entropy of local systems on Earth—that is, Δ S syst size 12{DS rSub { size 8{"syst"} } } {} is negative. But the overall entropy of the rest of the universe increases by a greater amount—that is, Δ S envir size 12{DS rSub { size 8{"envir"} } } {} is positive and greater in magnitude. Thus, Δ S tot = Δ S syst + Δ S envir > 0 size 12{DS rSub { size 8{"tot"} } =DS rSub { size 8{"syst"} } +DS rSub { size 8{"envir"} }>0} {} , and the second law of thermodynamics is not violated.

Every time a plant stores some solar energy in the form of chemical potential energy, or an updraft of warm air lifts a soaring bird, the Earth can be viewed as a heat engine operating between a hot reservoir supplied by the Sun and a cold reservoir supplied by dark outer space—a heat engine of high complexity, causing local decreases in entropy as it uses part of the heat transfer from the Sun into deep space. There is a large total increase in entropy resulting from this massive heat transfer. A small part of this heat transfer is stored in structured systems on Earth, producing much smaller local decreases in entropy. (See [link] .)

The figure shows the schematic diagram for heat transfer from the Sun into deep space. The picture of the Sun is shown at the left most end of the diagram. The temperature of the Sun is marked as T sub h. The heat Q is shown to flow as a bold arrow pointing till the right end of the diagram which is labeled as deep space. The temperature here is shown as T sub c equals three Kelvin. The Earth is shown as a sphere at the middle of this bold arrow stream between Sun and deep space. The Earth is shown to receive an internal energy delta U. The change in entropy of Earth delta S is shown to be less than zero with a question mark.
Earth’s entropy may decrease in the process of intercepting a small part of the heat transfer from the Sun into deep space. Entropy for the entire process increases greatly while Earth becomes more structured with living systems and stored energy in various forms.

Phet explorations: reversible reactions

Watch a reaction proceed over time. How does total energy affect a reaction rate? Vary temperature, barrier height, and potential energies. Record concentrations and time in order to extract rate coefficients. Do temperature dependent studies to extract Arrhenius parameters. This simulation is best used with teacher guidance because it presents an analogy of chemical reactions.

Reversible Reactions
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics 101. OpenStax CNX. Jan 07, 2013 Download for free at http://legacy.cnx.org/content/col11479/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics 101' conversation and receive update notifications?

Ask