<< Chapter < Page | Chapter >> Page > |
Greenhouse gases are probably the most significant drivers of the climate. When heat energy from the sun strikes the Earth, gases known as greenhouse gases trap the heat in the atmosphere, as do the glass panes of a greenhouse keep heat from escaping. The greenhouse gases that affect Earth include carbon dioxide, methane, water vapor, nitrous oxide, and ozone. Approximately half of the radiation from the sun passes through these gases in the atmosphere and strikes the Earth. This radiation is converted into thermal radiation on the Earth’s surface, and then a portion of that energy is re-radiated back into the atmosphere. Greenhouse gases, however, reflect much of the thermal energy back to the Earth’s surface. The more greenhouse gases there are in the atmosphere, the more thermal energy is reflected back to the Earth’s surface. Greenhouse gases absorb and emit radiation and are an important factor in the greenhouse effect : the warming of Earth due to carbon dioxide and other greenhouse gases in the atmosphere.
Evidence supports the relationship between atmospheric concentrations of carbon dioxide and temperature: as carbon dioxide rises, global temperature rises. Since 1950, the concentration of atmospheric carbon dioxide has increased from about 280 ppm to 382 ppm in 2006. In 2011, the atmospheric carbon dioxide concentration was 392 ppm. However, the planet would not be inhabitable by current life forms if water vapor did not produce its drastic greenhouse warming effect.
Scientists look at patterns in data and try to explain differences or deviations from these patterns. The atmospheric carbon dioxide data reveal a historical pattern of carbon dioxide increasing and decreasing, cycling between a low of 180 ppm and a high of 300 ppm. Scientists have concluded that it took around 50,000 years for the atmospheric carbon dioxide level to increase from its low minimum concentration to its higher maximum concentration. However, starting recently, atmospheric carbon dioxide concentrations have increased beyond the historical maximum of 300 ppm. The current increases in atmospheric carbon dioxide have happened very quickly—in a matter of hundreds of years rather than thousands of years. What is the reason for this difference in the rate of change and the amount of increase in carbon dioxide? A key factor that must be recognized when comparing the historical data and the current data is the presence of modern human society; no other driver of climate change has yielded changes in atmospheric carbon dioxide levels at this rate or to this magnitude.
Human activity releases carbon dioxide and methane, two of the most important greenhouse gases, into the atmosphere in several ways. The primary mechanism that releases carbon dioxide is the burning of fossil fuels, such as gasoline, coal, and natural gas ( [link] ). Deforestation, cement manufacture, animal agriculture, the clearing of land, and the burning of forests are other human activities that release carbon dioxide. Methane (CH 4 ) is produced when bacteria break down organic matter under anaerobic conditions. Anaerobic conditions can happen when organic matter is trapped underwater (such as in rice paddies) or in the intestines of herbivores. Methane can also be released from natural gas fields and the decomposition that occurs in landfills. Another source of methane is the melting of clathrates. Clathrates are frozen chunks of ice and methane found at the bottom of the ocean. When water warms, these chunks of ice melt and methane is released. As the ocean’s water temperature increases, the rate at which clathrates melt is increasing, releasing even more methane. This leads to increased levels of methane in the atmosphere, which further accelerates the rate of global warming. This is an example of the positive feedback loop that is leading to the rapid rate of increase of global temperatures.
Notification Switch
Would you like to follow the 'University of georgia concepts of biology' conversation and receive update notifications?