<< Chapter < Page | Chapter >> Page > |
(See Exercise 18 from "Problems On Random Vectors and Joint Distributions", and Exercise 28 from "Problems on Mathematical Expectation"). for , .
tuappr: [0 2] [0 2]200 200 (3/23)*(t + 2*u).*(u<=max(2-t,t))
VX = 0.3984 CV = -0.0108 a = -0.0272 b = 0.9909
(See Exercise 21 from "Problems On Random Vectors and Joint Distributions", and Exercise 31 from "Problems on Mathematical Expectation"). , for , .
tuappr: [0 2] [0 2]400 400 (2/13)*(t + 2*u).*(u<=min(2*t,3-t))
VX = 0.1698 CV = -0.0229 a = -0.1350 b = 1.0839
(See Exercise 22 from "Problems On Random Vectors and Joint Distributions", and Exercise 32 from "Problems on Mathematical Expectation"). , for .
tuappr: [0 2] [0 1]400 200 (3/8)*(t.^2 + 2*u).*(t<=1) + (9/14)*t.^2.*u.^2.*(t>1)
VX = 0.3517 CV = 0.0287 a = 0.0817 b = 0.5989
The class of random variables is iid (independent, identically distributed) with common distribution
Let . Determine and . Do this using icalc, then repeat with icalc3 and compare results.
x = [-5 -1 3 4 7];px = 0.01*[15 20 30 25 10];EX = dot(x,px) % Use of properties
EX = 1.6500VX = dot(x.^2,px) - EX^2
VX = 12.8275EW = (3 - 4+ 2)*EX
EW = 1.6500VW = (3^2 + 4^2 + 2^2)*VX
VW = 371.9975icalc % Iterated use of icalc
Enter row matrix of X-values xEnter row matrix of Y-values x
Enter X probabilities pxEnter Y probabilities px
Use array operations on matrices X, Y, PX, PY, t, u, and PG = 3*t - 4*u;
[R,PR]= csort(G,P);
icalcEnter row matrix of X-values R
Enter row matrix of Y-values xEnter X probabilities PR
Enter Y probabilities pxUse array operations on matrices X, Y, PX, PY, t, u, and P
H = t + 2*u;[W,PW] = csort(H,P);EW = dot(W,PW)
EW = 1.6500VW = dot(W.^2,PW) - EW^2
VW = 371.9975icalc3 % Use of icalc3
Enter row matrix of X-values xEnter row matrix of Y-values x
Enter row matrix of Z-values xEnter X probabilities px
Enter Y probabilities pxEnter Z probabilities px
Use array operations on matrices X, Y, Z,PX, PY, PZ, t, u, v, and P
S = 3*t - 4*u + 2*v;[w,pw] = csort(S,P);Ew = dot(w,pw)
Ew = 1.6500Vw = dot(w.^2,pw) - Ew^2
Vw = 371.9975
for , (see Exercise 25 and Exercise 37 from "Problems on Mathematical Expectation").
Determine and . Check with discrete approximation.
tuappr: [0 2] [0 3]200 300 (3/88)*(2*t+3*u.^2).*(u<=1+t)
G = 4*t.*(t<=1) + (t+u).*(t>1);
EZ = total(G.*P)EZ = 3.2110
EX = dot(X,PX)EX = 1.4220
CV = total(G.*t.*P) - EX*EZCV = 0.2445 % Theoretical 0.2435
VZ = total(G.^2.*P) - EZ^2VZ = 0.7934 % Theoretical 0.7913
for , (see Exercise 27 and Exercise 38 from "Problems on Mathematical Expectation").
Determine and . Check with discrete approximation.
tuappr: [0 2] [0 1]400 200 (24/11)*t.*u.*(u<=min(1,2-t))
G = (t/2).*(u>t) + u.^2.*(u<=t);
VZ = total(G.^2.*P) - EZ^2VZ = 0.0425
CV = total(t.*G.*P) - EZ*dot(X,PX)CV = -9.2940e-04
for , (see Exercise 28 and Exercise 39 from "Problems on Mathematical Expectation").
Determine and . Check with discrete approximation.
tuappr: [0 2] [0 2]400 400 (3/23)*(t+2*u).*(u<=max(2-t,t))
M = max(t,u)<=1;
G = (t+u).*M + 2*u.*(1-M);EZ = total(G.*P);
EX = dot(X,PX);CV = total(t.*G.*P) - EX*EZ
CV = 0.0017
, for , (see Exercise 29 and Exercise 40 from "Problems on Mathematical Expectation").
Determine and . Check with discrete approximation.
tuappr: [0 2] [0 2]400 400 (12/179)*(3*t.^2 + u).*(u<= min(2,3-t))
M = (t<=1)&(u>=1);
G = (t + u).*M + 2*u.^2.*(1 - M);EZ = total(G.*P);
EX = dot(X,PX);CV = total(t.*G.*P) - EZ*EX
CV = -0.1347
, for , (see Exercise 30 and Exercise 41 from "Problems on Mathematical Expectation").
Determine and . Check with discrete approximation.
tuappr: [0 2] [0 2]400 400 (12/227)*(3*t + 2*t.*u).*(u<= min(1+t,2))
EX = dot(X,PX);M = u<= min(1,2-t);
G = t.*M + t.*u.*(1 - M);EZ = total(G.*P);
EZX = total(t.*G.*P)EZX = 2.5597
CV = EZX - EX*EZCV = 0.2188
VZ = total(G.^2.*P) - EZ^2VZ = 0.6907
(See [link] , and Exercises 9 and 10 from "Problems on Functions of Random Variables"). For the pair in [link] , let
Determine the joint distribution for the pair and determine the regression line of W on Z .
npr08_07 Data are in X, Y, P
jointzwEnter joint prob for (X,Y) P
Enter values for X XEnter values for Y Y
Enter expression for g(t,u) 3*t.^2 + 2*t.*u - u.^2Enter expression for h(t,u) t.*(t+u<=4) + 2*u.*(t+u>4)
Use array operations on Z, W, PZ, PW, v, w, PZWEZ = dot(Z,PZ)
EZ = 5.2975EW = dot(W,PW)
EW = 4.7379VZ = dot(Z.^2,PZ) - EZ^2
VZ = 1.0588e+03CZW = total(v.*w.*PZW) - EZ*EW
CZW = -12.1697a = CZW/VZ
a = -0.0115b = EW - a*EZ
b = 4.7988 % Regression line: w = av + b
Notification Switch
Would you like to follow the 'Applied probability' conversation and receive update notifications?