<< Chapter < Page Chapter >> Page >

(See Exercise 18 from "Problems On Random Vectors and Joint Distributions", and Exercise 28 from "Problems on Mathematical Expectation"). f X Y ( t , u ) = 3 23 ( t + 2 u ) for 0 t 2 , 0 u max { 2 - t , t } .

E [ X ] = 53 46 , E [ Y ] = 22 23 , E [ X 2 ] = 9131 5290
E [ X Y ] = 3 23 0 1 0 2 - t t u ( t + 2 u ) d u d t + 3 23 1 2 0 t t u ( t + 2 u ) d u d t = 251 230
Cov [ X , Y ] = - 57 5290 , Var [ X ] = 4217 10580
a = Cov [ X , Y ] / Var [ X ] = - 114 4217 b = E [ Y ] - a E [ X ] = 4165 4217
tuappr: [0 2] [0 2]200 200 (3/23)*(t + 2*u).*(u<=max(2-t,t)) VX = 0.3984 CV = -0.0108 a = -0.0272 b = 0.9909
Got questions? Get instant answers now!

(See Exercise 21 from "Problems On Random Vectors and Joint Distributions", and Exercise 31 from "Problems on Mathematical Expectation"). f X Y ( t , u ) = 2 13 ( t + 2 u ) , for 0 t 2 , 0 u min { 2 t , 3 - t } .

E [ X ] = 16 13 , E [ Y ] = 11 12 , E [ X 2 ] = 2847 1690
E [ X Y ] = 2 13 0 1 0 3 - t t u ( t + 2 u ) d u d t + 2 13 1 2 0 2 t t u ( t + 2 u ) d u d t = 431 390
Cov [ X , Y ] = - 3 130 Var [ X ] = 287 1690
a = Cov [ X , Y ] / Var [ X ] = - 39 297 b = E [ Y ] - a E [ X ] = 3733 3444
tuappr: [0 2] [0 2]400 400 (2/13)*(t + 2*u).*(u<=min(2*t,3-t)) VX = 0.1698 CV = -0.0229 a = -0.1350 b = 1.0839
Got questions? Get instant answers now!

(See Exercise 22 from "Problems On Random Vectors and Joint Distributions", and Exercise 32 from "Problems on Mathematical Expectation"). f X Y ( t , u ) = I [ 0 , 1 ] ( t ) 3 8 ( t 2 + 2 u ) + I ( 1 , 2 ] ( t ) 9 14 t 2 u 2 , for 0 u 1 .

E [ X ] = 243 224 , E [ Y ] = 11 16 , E [ X 2 ] = 107 70
E [ X Y ] = 3 8 0 1 0 1 t u ( t 2 + 2 u ) d u d t + 9 14 1 2 0 1 t 3 u 3 d u d t = 347 448
Cov [ X , Y ] = 103 3584 , Var [ X ] = 88243 250880
a = Cov [ X , Y ] / Var [ X ] = 7210 88243 b = E [ Y ] - a E [ X ] = 105691 176486
tuappr: [0 2] [0 1]400 200 (3/8)*(t.^2 + 2*u).*(t<=1) + (9/14)*t.^2.*u.^2.*(t>1) VX = 0.3517 CV = 0.0287 a = 0.0817 b = 0.5989
Got questions? Get instant answers now!

The class { X , Y , Z } of random variables is iid (independent, identically distributed) with common distribution

X = [ - 5 - 1 3 4 7 ] P X = 0 . 01 * [ 15 20 30 25 10 ]

Let W = 3 X - 4 Y + 2 Z . Determine E [ W ] and Var [ W ] . Do this using icalc, then repeat with icalc3 and compare results.

x = [-5 -1 3 4 7];px = 0.01*[15 20 30 25 10];EX = dot(x,px) % Use of properties EX = 1.6500VX = dot(x.^2,px) - EX^2 VX = 12.8275EW = (3 - 4+ 2)*EX EW = 1.6500VW = (3^2 + 4^2 + 2^2)*VX VW = 371.9975icalc % Iterated use of icalc Enter row matrix of X-values xEnter row matrix of Y-values x Enter X probabilities pxEnter Y probabilities px Use array operations on matrices X, Y, PX, PY, t, u, and PG = 3*t - 4*u; [R,PR]= csort(G,P); icalcEnter row matrix of X-values R Enter row matrix of Y-values xEnter X probabilities PR Enter Y probabilities pxUse array operations on matrices X, Y, PX, PY, t, u, and P H = t + 2*u;[W,PW] = csort(H,P);EW = dot(W,PW) EW = 1.6500VW = dot(W.^2,PW) - EW^2 VW = 371.9975icalc3 % Use of icalc3 Enter row matrix of X-values xEnter row matrix of Y-values x Enter row matrix of Z-values xEnter X probabilities px Enter Y probabilities pxEnter Z probabilities px Use array operations on matrices X, Y, Z,PX, PY, PZ, t, u, v, and P S = 3*t - 4*u + 2*v;[w,pw] = csort(S,P);Ew = dot(w,pw) Ew = 1.6500Vw = dot(w.^2,pw) - Ew^2 Vw = 371.9975
Got questions? Get instant answers now!

f X Y ( t , u ) = 3 88 ( 2 t + 3 u 2 ) for 0 t 2 , 0 u 1 + t (see Exercise 25 and Exercise 37 from "Problems on Mathematical Expectation").

Z = I [ 0 , 1 ] ( X ) 4 X + I ( 1 , 2 ] ( X ) ( X + Y )
E [ X ] = 313 220 , E [ Z ] = 5649 1760 , E [ Z 2 ] = 4881 440

Determine Var [ Z ] and Cov [ X , Z ] . Check with discrete approximation.

E [ X Z ] = 3 88 0 1 0 1 + t 4 t 2 ( 2 t + 3 u 2 ) d u d t + 3 88 1 2 0 1 + t t ( t + u ) ( 2 t + 3 u 2 ) d u d t = 16931 3520
Var [ Z ] = E [ Z 2 ] - E 2 [ Z ] = 2451039 3097600 Cov [ X , Z ] = E [ X Z ] - E [ X ] E [ Z ] = 94273 387200
tuappr: [0 2] [0 3]200 300 (3/88)*(2*t+3*u.^2).*(u<=1+t) G = 4*t.*(t<=1) + (t+u).*(t>1); EZ = total(G.*P)EZ = 3.2110 EX = dot(X,PX)EX = 1.4220 CV = total(G.*t.*P) - EX*EZCV = 0.2445 % Theoretical 0.2435 VZ = total(G.^2.*P) - EZ^2VZ = 0.7934 % Theoretical 0.7913
Got questions? Get instant answers now!

f X Y ( t , u ) = 24 11 t u for 0 t 2 , 0 u min { 1 , 2 - t } (see Exercise 27 and Exercise 38 from "Problems on Mathematical Expectation").

Z = I M ( X , Y ) 1 2 X + I M c ( X , Y ) Y 2 , M = { ( t , u ) : u > t }
E [ X ] = 52 55 , E [ Z ] = 16 55 , E [ Z 2 ] = 39 308

Determine Var [ Z ] and Cov [ X , Z ] . Check with discrete approximation.

E [ X Z ] = 24 11 0 1 t 1 t ( t / 2 ) t u d u d t + 24 11 0 1 0 t t u 2 t u d u d t + 24 11 1 2 0 2 - t t t u 2 t u d u d t = 211 770
Var [ Z ] = E [ Z 2 ] - E 2 [ Z ] = 3557 84700 Cov [ Z , X ] = E [ X Z ] - E [ X ] E [ Z ] = - 43 42350
tuappr: [0 2] [0 1]400 200 (24/11)*t.*u.*(u<=min(1,2-t)) G = (t/2).*(u>t) + u.^2.*(u<=t); VZ = total(G.^2.*P) - EZ^2VZ = 0.0425 CV = total(t.*G.*P) - EZ*dot(X,PX)CV = -9.2940e-04
Got questions? Get instant answers now!

f X Y ( t , u ) = 3 23 ( t + 2 u ) for 0 t 2 , 0 u max { 2 - t , t } (see Exercise 28 and Exercise 39 from "Problems on Mathematical Expectation").

Z = I M ( X , Y ) ( X + Y ) + I M c ( X , Y ) 2 Y , M = { ( t , u ) : max ( t , u ) 1 }
E [ X ] = 53 46 , E [ Z ] = 175 92 , E [ Z 2 ] = 2063 460

Determine Var [ Z ] and Cov [ Z ] . Check with discrete approximation.

E [ Z X ] = 3 23 0 1 0 1 t ( t + u ) ( t + 2 u ) d u d t + 3 23 0 1 1 2 - t 2 t u ( t + 2 u ) d u d t +
3 23 1 2 1 t 2 t u ( t + 2 u ) d u d t = 1009 460
Var [ Z ] = E [ Z 2 ] - E 2 [ Z ] = 36671 42320 Cov [ Z , X ] = E [ Z X ] - E [ Z ] E [ X ] = 39 21160
tuappr: [0 2] [0 2]400 400 (3/23)*(t+2*u).*(u<=max(2-t,t)) M = max(t,u)<=1; G = (t+u).*M + 2*u.*(1-M);EZ = total(G.*P); EX = dot(X,PX);CV = total(t.*G.*P) - EX*EZ CV = 0.0017
Got questions? Get instant answers now!

f X Y ( t , u ) = 12 179 ( 3 t 2 + u ) , for 0 t 2 , 0 u min { 2 , 3 - t } (see Exercise 29 and Exercise 40 from "Problems on Mathematical Expectation").

Z = I M ( X , Y ) ( X + Y ) + I M c ( X , Y ) 2 Y 2 , M = { ( t , u ) : t 1 , u 1 }
E [ X ] = 2313 1790 , E [ Z ] = 1422 895 , E [ Z 2 ] = 28296 6265

Determine Var [ Z ] and Cov [ X , Z ] . Check with discrete approximation.

E [ Z X ] = 12 179 0 1 1 2 t ( t + u ) ( 3 t 2 + u ) d u d t + 12 179 0 1 0 1 2 t u 2 ( 3 t 2 + u ) d u d t +
12 179 1 2 0 3 - t 2 t u 2 ( 3 t 2 + u ) d u d t = 24029 12530
Var [ Z ] = E [ Z 2 ] - E 2 [ Z ] = 11170332 5607175 Cov [ Z , X ] = E [ Z X ] - E [ Z ] E [ X ] = - 1517647 11214350
tuappr: [0 2] [0 2]400 400 (12/179)*(3*t.^2 + u).*(u<= min(2,3-t)) M = (t<=1)&(u>=1); G = (t + u).*M + 2*u.^2.*(1 - M);EZ = total(G.*P); EX = dot(X,PX);CV = total(t.*G.*P) - EZ*EX CV = -0.1347
Got questions? Get instant answers now!

f X Y ( t , u ) = 12 227 ( 3 t + 2 t u ) , for 0 t 2 , 0 u min { 1 + t , 2 } (see Exercise 30 and Exercise 41 from "Problems on Mathematical Expectation").

Z = I M ( X , Y ) X + I M c ( X , Y ) X Y , M = { ( t , u ) : u min ( 1 , 2 - t ) }
E [ X ] = 1567 1135 , E [ Z ] = 5774 3405 , E [ Z 2 ] = 56673 15890

Determine Var [ Z ] and Cov [ X , Z ] . Check with discrete approximation.

E [ Z X ] = 12 227 0 1 0 1 t 2 ( 3 t + 2 t u ) d u d t + 12 227 1 2 0 2 - t t 2 ( 3 t + 2 t u ) d u d t +
12 227 0 1 1 1 + t t 2 u ( 3 t + 2 t u ) d u d t + 12 227 1 2 2 - t 2 t 2 u ( 3 t + 2 t u ) d u d t = 20338 7945
Var [ Z ] = E [ Z 2 ] - E 2 [ Z ] = 112167631 162316350 Cov [ Z , X ] = E [ Z X ] - E [ Z ] E [ X ] = 5915884 27052725
tuappr: [0 2] [0 2]400 400 (12/227)*(3*t + 2*t.*u).*(u<= min(1+t,2)) EX = dot(X,PX);M = u<= min(1,2-t); G = t.*M + t.*u.*(1 - M);EZ = total(G.*P); EZX = total(t.*G.*P)EZX = 2.5597 CV = EZX - EX*EZCV = 0.2188 VZ = total(G.^2.*P) - EZ^2VZ = 0.6907
Got questions? Get instant answers now!

(See [link] , and Exercises 9 and 10 from "Problems on Functions of Random Variables"). For the pair { X , Y } in [link] , let

Z = g ( X , Y ) = 3 X 2 + 2 X Y - Y 2
W = h ( X , Y ) = X for X + Y 4 2 Y for X + Y > 4 = I M ( X , Y ) X + I M c ( X , Y ) 2 Y

Determine the joint distribution for the pair { Z , W } and determine the regression line of W on Z .

npr08_07 Data are in X, Y, P jointzwEnter joint prob for (X,Y) P Enter values for X XEnter values for Y Y Enter expression for g(t,u) 3*t.^2 + 2*t.*u - u.^2Enter expression for h(t,u) t.*(t+u<=4) + 2*u.*(t+u>4) Use array operations on Z, W, PZ, PW, v, w, PZWEZ = dot(Z,PZ) EZ = 5.2975EW = dot(W,PW) EW = 4.7379VZ = dot(Z.^2,PZ) - EZ^2 VZ = 1.0588e+03CZW = total(v.*w.*PZW) - EZ*EW CZW = -12.1697a = CZW/VZ a = -0.0115b = EW - a*EZ b = 4.7988 % Regression line: w = av + b
Got questions? Get instant answers now!

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Applied probability. OpenStax CNX. Aug 31, 2009 Download for free at http://cnx.org/content/col10708/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Applied probability' conversation and receive update notifications?

Ask