<< Chapter < Page Chapter >> Page >

The class { A , B , C , D , E , F } is independent, with respective probabilities

0.43, 0.53, 0.46, 0.37, 0.45, 0.39. Let

X = 6 I A + 13 I B - 8 I C , Y = - 3 I D + 4 I E + I F - 7
  1. Use properties of expectation and variance to obtain E [ X ] , Var [ X ] , E [ Y ] , and Var [ Y ] . Note that it is not necessary to obtain the distributions for X or Y .
  2. Let Z = 3 Y - 2 X .
    Determine E [ Z ] , and Var [ Z ] .
cx = [6 13 -8 0];cy = [-3 4 1 -7];px = 0.01*[43 53 46 100];py = 0.01*[37 45 39 100];EX = dot(cx,px) EX = 5.7900EY = dot(cy,py) EY = -5.9200VX = sum(cx.^2.*px.*(1-px)) VX = 66.8191VY = sum(cy.^2.*py.*(1-py)) VY = 6.2958EZ = 3*EY - 2*EX EZ = -29.3400VZ = 9*VY + 4*VX VZ = 323.9386
Got questions? Get instant answers now!

Consider X = - 3 . 3 I A - 1 . 7 I B + 2 . 3 I C + 7 . 6 I D - 3 . 4 . The class { A , B , C , D } has minterm

probabilities (data are in m-file npr12_10.m )

pmx = [ 0 . 0475 0 . 0725 0 . 0120 0 . 0180 0 . 1125 0 . 1675 0 . 0280 0 . 0420
0 . 0480 0 . 0720 0 . 0130 0 . 0170 0 . 1120 0 . 1680 0 . 0270 0 . 0430 ]
  1. Calculate E [ X ] and Var [ X ] .
  2. Let W = 2 X 2 - 3 X + 2 .
    Calculate E [ W ] and Var [ W ] .
npr12_10 Data are in cx, cy, pmx and pmy canonicEnter row vector of coefficients cx Enter row vector of minterm probabilities pmxUse row matrices X and PX for calculations Call for XDBN to view the distributionEX = dot(X,PX) EX = -1.2200VX = dot(X.^2,PX) - EX^2 VX = 18.0253G = 2*X.^2 - 3*X + 2; [W,PW]= csort(G,PX); EW = dot(W,PW)EW = 44.6874 VW = dot(W.^2,PW) - EW^2VW = 2.8659e+03
Got questions? Get instant answers now!

Consider a second random variable Y = 10 I E + 17 I F + 20 I G - 10 in addition to that in [link] . The class { E , F , G } has minterm probabilities (in mfile npr12_10.m )

pmy = [ 0 . 06 0 . 14 0 . 09 0 . 21 0 . 06 0 . 14 0 . 09 0 . 21 ]

The pair { X , Y } is independent.

  1. Calculate E [ Y ] and Var [ Y ] .
  2. Let Z = X 2 + 2 X Y - Y .
    Calculate E [ Z ] and Var [ Z ] .

(Continuation of [link] )

[Y,PY] = canonicf(cy,pmy);EY = dot(Y,PY) EY = 19.2000VY = dot(Y.^2,PY) - EY^2 VY = 178.3600icalc Enter row matrix of X-values XEnter row matrix of Y-values Y Enter X probabilities PXEnter Y probabilities PY Use array operations on matrices X, Y, PX, PY, t, u, and PH = t.^2 + 2*t.*u - u; [Z,PZ]= csort(H,P); EZ = dot(Z,PZ)EZ = -46.5343VZ = dot(Z.^2,PZ) - EZ^2 VZ = 3.7165e+04
Got questions? Get instant answers now!

Suppose the pair { X , Y } is independent, with X gamma (3,0.1) and

Y Poisson (13). Let Z = 2 X - 5 Y . Determine E [ Z ] and Var [ Z ] .

X gamma (3, 0.1) implies E [ X ] = 30 and Var [ X ] = 300 . Y Poisson (13) implies E [ Y ] = Var [ Y ] = 13 . Then

E [ Z ] = 2 · 30 - 5 · 13 = - 5 , Var [ Z ] = 4 · 300 + 25 · 13 = 1525
Got questions? Get instant answers now!

The pair { X , Y } is jointly distributed with the following parameters:

E [ X ] = 3 , E [ Y ] = 4 , E [ X Y ] = 15 , E [ X 2 ] = 11 , Var [ Y ] = 5

Determine Var [ 3 X - 2 Y ] .

EX = 3; EY = 4;EXY = 15; EX2 = 11;VY = 5; VX = EX2 - EX^2VX = 2 CV = EXY - EX*EYCV = 3 VZ = 9*VX + 4*VY - 6*2*CVVZ = 2

Got questions? Get instant answers now!

The class { A , B , C , D , E , F } is independent, with respective probabilities

0 . 47 , 0 . 33 , 0 . 46 , 0 . 27 , 0 . 41 , 0 . 37

Let

X = 8 I A + 11 I B - 7 I C , Y = - 3 I D + 5 I E + I F - 3 , and Z = 3 Y - 2 X
  1. Use properties of expectation and variance to obtain E [ X ] , Var [ X ] , E [ Y ] , and Var [ Y ] .
  2. Determine E [ Z ] , and Var [ Z ] .
  3. Use appropriate m-programs to obtain E [ X ] , Var [ X ] , E [ Y ] , Var [ Y ] , E [ Z ] , and Var [ Z ] . Compare with results of parts (a) and (b).
px = 0.01*[47 33 46 100];py = 0.01*[27 41 37 100];cx = [8 11 -7 0];cy = [-3 5 1 -3];ex = dot(cx,px) ex = 4.1700ey = dot(cy,py) ey = -1.3900vx = sum(cx.^2.*px.*(1 - px)) vx = 54.8671vy = sum(cy.^2.*py.*(1-py)) vy = 8.0545[X,PX] = canonicf(cx,minprob(px(1:3)));[Y,PY] = canonicf(cy,minprob(py(1:3)));icalc Enter row matrix of X-values XEnter row matrix of Y-values Y Enter X probabilities PXEnter Y probabilities PY Use array operations on matrices X, Y, PX, PY, t, u, and PEX = dot(X,PX) EX = 4.1700EY = dot(Y,PY) EY = -1.3900VX = dot(X.^2,PX) - EX^2 VX = 54.8671VY = dot(Y.^2,PY) - EY^2 VY = 8.0545EZ = 3*EY - 2*EX EZ = -12.5100VZ = 9*VY + 4*VX VZ = 291.9589
Got questions? Get instant answers now!

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Applied probability. OpenStax CNX. Aug 31, 2009 Download for free at http://cnx.org/content/col10708/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Applied probability' conversation and receive update notifications?

Ask