<< Chapter < Page Chapter >> Page >

The already familiar direction of heat transfer from hot to cold is the basis of our first version of the second law of thermodynamics    .

The second law of thermodynamics (first expression)

Heat transfer occurs spontaneously from higher- to lower-temperature bodies but never spontaneously in the reverse direction.

Another way of stating this: It is impossible for any process to have as its sole result heat transfer from a cooler to a hotter object.

Heat engines

Now let us consider a device that uses heat transfer to do work. As noted in the previous section, such a device is called a heat engine, and one is shown schematically in [link] (b). Gasoline and diesel engines, jet engines, and steam turbines are all heat engines that do work by using part of the heat transfer from some source. Heat transfer from the hot object (or hot reservoir) is denoted as Q h size 12{Q rSub { size 8{h} } } {} , while heat transfer into the cold object (or cold reservoir) is Q c size 12{Q rSub { size 8{c} } } {} , and the work done by the engine is W size 12{W} {} . The temperatures of the hot and cold reservoirs are T h size 12{T rSub { size 8{h} } } {} and T c size 12{T rSub { size 8{c} } } {} , respectively.

Part a of the figure shows the spontaneous heat transfer from a hot system to a cold system. The hot reservoir at temperature T sub h is represented by a rectangular section in the top and the cold reservoir at temperature T sub c is shown as a rectangular section at the bottom. Heat is shown to flow from hot reservoir to cold reservoir as shown by a bold arrow pointing downward. Part b of the figure shows a heat engine represented as a circle. The hot reservoir at temperature T sub h is represented by a rectangular section at the top and a cold reservoir at temperature T sub c is shown as a rectangular section at the bottom. Heat Q sub h is transferred out of the hot reservoir, work W is the output equals Q sub h minus Q sub c, and heat Q sub c is the heat transferred into the cold reservoir. All these are shown using bold arrows.
(a) Heat transfer occurs spontaneously from a hot object to a cold one, consistent with the second law of thermodynamics. (b) A heat engine, represented here by a circle, uses part of the heat transfer to do work. The hot and cold objects are called the hot and cold reservoirs. Q h size 12{Q rSub { size 8{h} } } {} is the heat transfer out of the hot reservoir, W size 12{W} {} is the work output, and Q c size 12{Q rSub { size 8{c} } } {} is the heat transfer into the cold reservoir.

Because the hot reservoir is heated externally, which is energy intensive, it is important that the work is done as efficiently as possible. In fact, we would like W size 12{W} {} to equal Q h size 12{Q rSub { size 8{h} } } {} , and for there to be no heat transfer to the environment ( Q c = 0 size 12{Q rSub { size 8{c} } =0} {} ). Unfortunately, this is impossible. The second law of thermodynamics    also states, with regard to using heat transfer to do work (the second expression of the second law):

The second law of thermodynamics (second expression)

It is impossible in any system for heat transfer from a reservoir to completely convert to work in a cyclical process in which the system returns to its initial state.

A cyclical process    brings a system, such as the gas in a cylinder, back to its original state at the end of every cycle. Most heat engines, such as reciprocating piston engines and rotating turbines, use cyclical processes. The second law, just stated in its second form, clearly states that such engines cannot have perfect conversion of heat transfer into work done. Before going into the underlying reasons for the limits on converting heat transfer into work, we need to explore the relationships among W size 12{W} {} , Q h size 12{Q rSub { size 8{h} } } {} , and Q c size 12{Q rSub { size 8{c} } } {} , and to define the efficiency of a cyclical heat engine. As noted, a cyclical process brings the system back to its original condition at the end of every cycle. Such a system’s internal energy U is the same at the beginning and end of every cycle—that is, Δ U = 0 size 12{ΔU=0} {} . The first law of thermodynamics states that

Δ U = Q W , size 12{ΔU=Q - W} {}

where Q size 12{Q} {} is the net heat transfer during the cycle ( Q = Q h Q c size 12{Q=Q rSub { size 8{h} } - Q rSub { size 8{c} } } {} ) and W size 12{W} {} is the net work done by the system. Since Δ U = 0 size 12{ΔU=0} {} for a complete cycle, we have

Questions & Answers

I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics 101. OpenStax CNX. Jan 07, 2013 Download for free at http://legacy.cnx.org/content/col11479/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics 101' conversation and receive update notifications?

Ask