<< Chapter < Page Chapter >> Page >
  • State Hooke’s law.
  • Explain Hooke’s law using graphical representation between deformation and applied force.
  • Discuss the three types of deformations such as changes in length, sideways shear and changes in volume.
  • Describe with examples the young’s modulus, shear modulus and bulk modulus.
  • Determine the change in length given mass, length and radius.

We now move from consideration of forces that affect the motion of an object (such as friction and drag) to those that affect an object’s shape. If a bulldozer pushes a car into a wall, the car will not move but it will noticeably change shape. A change in shape due to the application of a force is a deformation    . Even very small forces are known to cause some deformation. For small deformations, two important characteristics are observed. First, the object returns to its original shape when the force is removed—that is, the deformation is elastic for small deformations. Second, the size of the deformation is proportional to the force—that is, for small deformations, Hooke’s law is obeyed. In equation form, Hooke’s law    is given by

F = k Δ L , size 12{F=kΔL} {}

where Δ L size 12{ΔL} {} is the amount of deformation (the change in length, for example) produced by the force F size 12{F} {} , and k size 12{k} {} is a proportionality constant that depends on the shape and composition of the object and the direction of the force. Note that this force is a function of the deformation Δ L size 12{ΔL} {} —it is not constant as a kinetic friction force is. Rearranging this to

Δ L = F k size 12{ΔL= { {F} over {k} } } {}

makes it clear that the deformation is proportional to the applied force. [link] shows the Hooke’s law relationship between the extension Δ L size 12{ΔL} {} of a spring or of a human bone. For metals or springs, the straight line region in which Hooke’s law pertains is much larger. Bones are brittle and the elastic region is small and the fracture abrupt. Eventually a large enough stress to the material will cause it to break or fracture. Tensile strength is the breaking stress that will cause permanent deformation or fracture of a material.

Hooke’s law

F = kΔL , size 12{F=kΔL} {}

where Δ L size 12{ΔL} {} is the amount of deformation (the change in length, for example) produced by the force F size 12{F} {} , and k size 12{k} {} is a proportionality constant that depends on the shape and composition of the object and the direction of the force.

Δ L = F k size 12{ΔL= { {F} over {k} } } {}
Line graph of change in length versus applied force. The line has a constant positive slope from the origin in the region where Hooke’s law is obeyed. The slope then decreases, with a lower, still positive slope until the end of the elastic region. The slope then increases dramatically in the region of permanent deformation until fracturing occurs.
A graph of deformation Δ L size 12{ΔL} {} versus applied force F size 12{F} {} . The straight segment is the linear region where Hooke’s law is obeyed. The slope of the straight region is 1 k size 12{ { {1} over {k} } } {} . For larger forces, the graph is curved but the deformation is still elastic— Δ L size 12{ΔL} {} will return to zero if the force is removed. Still greater forces permanently deform the object until it finally fractures. The shape of the curve near fracture depends on several factors, including how the force F size 12{F} {} is applied. Note that in this graph the slope increases just before fracture, indicating that a small increase in F size 12{F} {} is producing a large increase in L size 12{L} {} near the fracture.

The proportionality constant k size 12{k} {} depends upon a number of factors for the material. For example, a guitar string made of nylon stretches when it is tightened, and the elongation Δ L size 12{ΔL} {} is proportional to the force applied (at least for small deformations). Thicker nylon strings and ones made of steel stretch less for the same applied force, implying they have a larger k size 12{k} {} (see [link] ). Finally, all three strings return to their normal lengths when the force is removed, provided the deformation is small. Most materials will behave in this manner if the deformation is less than about 0.1% or about 1 part in 10 3 size 12{"10" rSup { size 8{3} } } {} .

Questions & Answers

I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics 110 at une. OpenStax CNX. Aug 29, 2013 Download for free at http://legacy.cnx.org/content/col11566/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics 110 at une' conversation and receive update notifications?

Ask