<< Chapter < Page | Chapter >> Page > |
Eye color in Drosophila was one of the first X-linked traits to be identified. Thomas Hunt Morgan mapped this trait to the X chromosome in 1910. Like humans, Drosophila males have an XY chromosome pair, and females are XX. In flies, the wild-type eye color is red (X W ) and it is dominant to white eye color (X w ) ( [link] ). Because of the location of the eye-color gene, reciprocal crosses do not produce the same offspring ratios. Males are said to be hemizygous , because they have only one allele for any X-linked characteristic. Hemizygosity makes the descriptions of dominance and recessiveness irrelevant for XY males. Drosophila males lack a second allele copy on the Y chromosome; that is, their genotype can only be X W Y or X w Y. In contrast, females have two allele copies of this gene and can be X W X W , X W X w , or X w X w .
In an X-linked cross, the genotypes of F 1 and F 2 offspring depend on whether the recessive trait was expressed by the male or the female in the P 1 generation. With regard to Drosophila eye color, when the P 1 male expresses the white-eye phenotype and the female is homozygous red-eyed, all members of the F 1 generation exhibit red eyes ( [link] ). The F 1 females are heterozygous (X W X w ), and the males are all X W Y, having received their X chromosome from the homozygous dominant P 1 female and their Y chromosome from the P 1 male. A subsequent cross between the X W X w female and the X W Y male would produce only red-eyed females (with X W X W or X W X w genotypes) and both red- and white-eyed males (with X W Y or X w Y genotypes). Now, consider a cross between a homozygous white-eyed female and a male with red eyes. The F 1 generation would exhibit only heterozygous red-eyed females (X W X w ) and only white-eyed males (X w Y). Half of the F 2 females would be red-eyed (X W X w ) and half would be white-eyed (X w X w ). Similarly, half of the F 2 males would be red-eyed (X W Y) and half would be white-eyed (X w Y).
What ratio of offspring would result from a cross between a white-eyed male and a female that is heterozygous for red eye color?
Discoveries in fruit fly genetics can be applied to human genetics. When a female parent is homozygous for a recessive X-linked trait, she will pass the trait on to 100 percent of her offspring. Her male offspring are, therefore, destined to express the trait, as they will inherit their father's Y chromosome. In humans, the alleles for certain conditions (some forms of color blindness, hemophilia, and muscular dystrophy) are X-linked. Females who are heterozygous for these diseases are said to be carriers and may not exhibit any phenotypic effects. These females will pass the disease to half of their sons and will pass carrier status to half of their daughters; therefore, recessive X-linked traits appear more frequently in males than females.
Notification Switch
Would you like to follow the 'Biology' conversation and receive update notifications?