<< Chapter < Page Chapter >> Page >
A molecular structure is shown with a red C H subscript 3 group bonded up and to the right to a red O atom. The O atom is bonded down and to the right to a C H subscript 2 group. The C H subscript 2 group is bonded up and to the right to a C H subscript 3 group.

Naming ethers

Provide the IUPAC and common name for the ether shown here:

A molecular structure shows a C H subscript 3 group bonded down and to the right to a C H subscript 2 group. The C H subscript 2 group is bonded up and to the right to an O atom. The O atom is bonded down and to the right to a C H subscript 2 group. The C H subscript 2 group is bonded up and to the right to a C H subscript 3 group.

Solution

IUPAC: The molecule is made up of an ethoxy group attached to an ethane chain, so the IUPAC name would be ethoxyethane.

Common: The groups attached to the oxygen atom are both ethyl groups, so the common name would be diethyl ether.

Check your learning

Provide the IUPAC and common name for the ether shown:

A molecular structure shows a C H subscript 3 group bonded up and to the right to an O atom. The O atom is bonded down and to the right to a C H group. The C H group is bonded up and to the right to a C H subscript 3 group. The C H group is also bonded down and to the right to another C H subscript 3 group.

Answer:

IUPAC: 2-methoxypropane; common: isopropylmethyl ether

Got questions? Get instant answers now!

Ethers can be obtained from alcohols by the elimination of a molecule of water from two molecules of the alcohol. For example, when ethanol is treated with a limited amount of sulfuric acid and heated to 140 °C, diethyl ether and water are formed:

This figure shows a reaction. The first molecule, which is labeled, “ethanol,” is a two C atom chain. The first C atom is bonded to three H atoms and a second C atom. The second C atom is bonded to a red O atom with two sets of electron dots. The O atom has a red bond to a red H atom. There is a plus sign. The next molecule, which is labeled, “ethanol,” is a red H atom with a red bond to a red O atom with two pairs of electron dots. The O atom is bonded to a C atom which is bonded to two H atoms and a second C atom. The second C atom is bonded to three H atoms. There is a green dotted box around the red H atom in the first molecule, the plus sign, and the red H and O atoms in the second molecule. To the right o the second molecule there is an arrow labeled H subscript 2 S O subscript 4 above and Greek capital delta below. The arrow is labeled, “sulfuric acid.” The resulting molecules are a C atom bonded with three H atoms and a second C atom. The second C atom is bonded to two H atoms and a red O atom. The red O atom has two sets of electron dots. The O atom is bonded to a third C atom which is bonded to two H atoms and a fourth C atom. The fourth C atom is bonded to three H atoms. This molecule is labeled, “diethyl ether.” There is a plus sign and a red H O H.

In the general formula for ethers, R— O —R, the hydrocarbon groups (R) may be the same or different. Diethyl ether, the most widely used compound of this class, is a colorless, volatile liquid that is highly flammable. It was first used in 1846 as an anesthetic, but better anesthetics have now largely taken its place. Diethyl ether and other ethers are presently used primarily as solvents for gums, fats, waxes, and resins. Tertiary -butyl methyl ether, C 4 H 9 OCH 3 (abbreviated MTBE—italicized portions of names are not counted when ranking the groups alphabetically—so butyl comes before methyl in the common name), is used as an additive for gasoline. MTBE belongs to a group of chemicals known as oxygenates due to their capacity to increase the oxygen content of gasoline.

Carbohydrates and diabetes

Carbohydrates are large biomolecules made up of carbon, hydrogen, and oxygen. The dietary forms of carbohydrates are foods rich in these types of molecules, like pastas, bread, and candy. The name “carbohydrate” comes from the formula of the molecules, which can be described by the general formula C m (H 2 O) n , which shows that they are in a sense “carbon and water” or “hydrates of carbon.” In many cases, m and n have the same value, but they can be different. The smaller carbohydrates are generally referred to as “sugars,” the biochemical term for this group of molecules is “saccharide” from the Greek word for sugar ( [link] ). Depending on the number of sugar units joined together, they may be classified as monosaccharides (one sugar unit), disaccharides (two sugar units), oligosaccharides (a few sugars), or polysaccharides (the polymeric version of sugars—polymers were described in the feature box earlier in this chapter on recycling plastics). The scientific names of sugars can be recognized by the suffix -ose at the end of the name (for instance, fruit sugar is a monosaccharide called “fructose” and milk sugar is a disaccharide called lactose composed of two monosaccharides, glucose and galactose, connected together). Sugars contain some of the functional groups we have discussed: Note the alcohol groups present in the structures and how monosaccharide units are linked to form a disaccharide by formation of an ether.

This figure shows structural and ball-and-stick models for the common sugars fructose and lactose. Carbon atoms are illustrated in black, oxygen atoms are red, and hydrogen atoms are white in the ball-and-stick models.
The illustrations show the molecular structures of fructose, a five-carbon monosaccharide, and of lactose, a disaccharide composed of two isomeric, six-carbon sugars.

Organisms use carbohydrates for a variety of functions. Carbohydrates can store energy, such as the polysaccharides glycogen in animals or starch in plants. They also provide structural support, such as the polysaccharide cellulose in plants and the modified polysaccharide chitin in fungi and animals. The sugars ribose and deoxyribose are components of the backbones of RNA and DNA, respectively. Other sugars play key roles in the function of the immune system, in cell-cell recognition, and in many other biological roles.

Diabetes is a group of metabolic diseases in which a person has a high sugar concentration in their blood ( [link] ). Diabetes may be caused by insufficient insulin production by the pancreas or by the body’s cells not responding properly to the insulin that is produced. In a healthy person, insulin is produced when it is needed and functions to transport glucose from the blood into the cells where it can be used for energy. The long-term complications of diabetes can include loss of eyesight, heart disease, and kidney failure.

In 2013, it was estimated that approximately 3.3% of the world’s population (~380 million people) suffered from diabetes, resulting in over a million deaths annually. Prevention involves eating a healthy diet, getting plenty of exercise, and maintaining a normal body weight. Treatment involves all of these lifestyle practices and may require injections of insulin.

This is a diagram of a hand with a blood droplet on an index finger and a nearby sharp pointed pen-like object. The finger is next shown touching a white and green test strip with arrows pointing to the green region where the bloody finger touches the strip. An arrow points to a small rectangular device in which the green end of the strip is inserted. An L C D display provides a reading.
Diabetes is a disease characterized by high concentrations of glucose in the blood. Treating diabetes involves making lifestyle changes, monitoring blood-sugar levels, and sometimes insulin injections. (credit: “Blausen Medical Communications”/Wikimedia Commons)

Key concepts and summary

Many organic compounds that are not hydrocarbons can be thought of as derivatives of hydrocarbons. A hydrocarbon derivative can be formed by replacing one or more hydrogen atoms of a hydrocarbon by a functional group, which contains at least one atom of an element other than carbon or hydrogen. The properties of hydrocarbon derivatives are determined largely by the functional group. The –OH group is the functional group of an alcohol. The –R–O–R– group is the functional group of an ether.

Chemistry end of chapter exercises

Why do the compounds hexane, hexanol, and hexene have such similar names?

Got questions? Get instant answers now!

Write condensed formulas and provide IUPAC names for the following compounds:

(a) ethyl alcohol (in beverages)

(b) methyl alcohol (used as a solvent, for example, in shellac)

(c) ethylene glycol (antifreeze)

(d) isopropyl alcohol (used in rubbing alcohol)

(e) glycerine

(a) ethyl alcohol, ethanol: CH 3 CH 2 OH; (b) methyl alcohol, methanol: CH 3 OH; (c) ethylene glycol, ethanediol: HOCH 2 CH 2 OH; (d) isopropyl alcohol, 2-propanol: CH 3 CH(OH)CH 3 ; (e) glycerine, l,2,3-trihydroxypropane: HOCH 2 CH(OH)CH 2 OH

Got questions? Get instant answers now!

Give the complete IUPAC name for each of the following compounds:

(a)
This shows a C H subscript 3 group bonded to a C H group. The C atom in the C H group is bonded above to an O H group. The C in the C H group is also bonded below to a C H subscript 2 group. The C H subscript 2 group is bonded below to a C H subscript 3 group.

(b)
This shows a C H subscript 3 group bonded to a C atom. The C atom is bonded to an O H group and an I atom. It is also bonded to a second C atom. This second C atom is bonded above and below to a C H subscript 3 group. The second C atom is bonded to a C H subscript 2 group with is bonded to a C H subscript 3 group.

(c)
This shows a C H subscript 3 group bonded to a C H group. The C atom in the C H group is bonded to an O H group. The C H group is bonded to a C atom. The C atom is bonded below to a C l atom and above to a C H subscript 2 group. The C atom in the C H subscript 2 group is also bonded to a C H subscript 3 group. The C atom is also bonded to a C H subscript 2 group to the right. This C H subscript 2 group is bonded to another C H subscript 2 group. Below this second C H subscript 2 group a C H subscript 3 group is bonded.

Got questions? Get instant answers now!

Give the complete IUPAC name and the common name for each of the following compounds:

(a)
This shows a C H subscript 3 group bonded to a C H subscript 2 group. This C H subscript 2 group is bonded to an O atom which is also bonded to a C H subscript 2 group. This C H subscript 2 group is bonded to a C H subscript 2 group. This C H subscript 2 group is bonded to a C H subscript 2 group. This C H subscript 2 group is bonded to a C H subscritp 3 group. All bonds are in a straight line.

(b)
This shows a C H subscript 3 group bonded to a C H subscript 2 group. This C H subscript 2 group is bonded to an O atom. This O atom is bonded to a C H subscript 2 group which is also bonded to another C H subscript 2 group. This C H subscript 2 group is bonded to a C H subscript 3 group. All bonds are in a straight line.

(c)
This figure shows a C H subscript 3 group bonded to an O atom. This O atom is bonded to a C H subscript 2 group which is also bonded to another C H subscript 2 group. This C H subscript 2 group is bonded to a C H subscript 3 group. All bonds are in a straight line.

(a) 1-ethoxybutane, butyl ethyl ether; (b) 1-ethoxypropane, ethyl propyl ether; (c) 1-methoxypropane, methyl propyl ether

Got questions? Get instant answers now!

Write the condensed structures of both isomers with the formula C 2 H 6 O. Label the functional group of each isomer.

Got questions? Get instant answers now!

Write the condensed structures of all isomers with the formula C 2 H 6 O 2 . Label the functional group (or groups) of each isomer.

HOCH 2 CH 2 OH, two alcohol groups; CH 3 OCH 2 OH, ether and alcohol groups

Got questions? Get instant answers now!

Draw the condensed formulas for each of the following compounds:

(a) dipropyl ether

(b) 2,2-dimethyl-3-hexanol

(c) 2-ethoxybutane

Got questions? Get instant answers now!

MTBE, Methyl tert -butyl ether, CH 3 OC(CH 3 ) 3 , is used as an oxygen source in oxygenated gasolines. MTBE is manufactured by reacting 2-methylpropene with methanol.

(a) Using Lewis structures, write the chemical equation representing the reaction.

(b) What volume of methanol, density 0.7915 g/mL, is required to produce exactly 1000 kg of MTBE, assuming a 100% yield?

(a)
A reaction is shown. The first molecule is a C atom bonded to another C atom. The first C atom (from left to right) is bonded to two C H subscript 3 groups. The second C atom is bonded to two H atoms. There is a plus sign. The next molecule shows an H atom bonded to an O atom bonded to a C H subscript 3 group. There is an arrow pointing right. This molecule shows a C atom bonded to three C H subscript 3 groups. The C atom is also bonded to an O atom which is also bonded to a C H subscript 3 group. ;
(b) 4.593 × 10 2 L

Got questions? Get instant answers now!

Write two complete balanced equations for each of the following reactions, one using condensed formulas and one using Lewis structures.

(a) propanol is converted to dipropyl ether

(b) propene is treated with water in dilute acid.

Got questions? Get instant answers now!

Write two complete balanced equations for each of the following reactions, one using condensed formulas and one using Lewis structures.

(a) 2-butene is treated with water in dilute acid

(b) ethanol is dehydrated to yield ethene

(a) CH 3 CH = CHCH 3 + H 2 O CH 3 CH 2 CH(OH)CH 3
A reaction is shown. The first molecule shows a C atom bonded with three H atoms. The first C atom is bonded to another C atom. The second C atom is bonded to an H atom and also forms a double bond with a third C atom. The third C atom is bonded to one H atom and fourth C atom. The fourth C atom is bonded to three H atoms. There is a plus sign. The second molecule shows an O atom with two sets of electron dots bonded to two H atoms. There is an arrow pointing right which is labeled, “acid.” The new molecule is a C atom bonded to three H atoms and a second C atom. The second C atom is bonded to two H atoms and a third C atom. The third C atom is bonded to an H atom and an O atom with two sets of electron dots. The O atom is bonded to an H atom. The third C atom is bonded to a fourth C atom which is bonded to three H atoms. ;
(b) CH 3 CH 2 OH CH 2 = CH 2 + H 2 O
A reaction is shown. The first molecule shows a C atom which is bonded to three H atoms and a second C atom. The second C atom is bonded to an O atom as well. The O atom has two sets of electron dots and is bonded to an H atom. There is an arrow that points to the right. The next molecule shows two C atoms forming a double bond between them. Each C atom is bonded to two H atoms. There is a plus sign. The next molecule shows an O atom with two sets of electron dots bonded to two H atoms.

Got questions? Get instant answers now!

Questions & Answers

what is defense mechanism
Chinaza Reply
what is defense mechanisms
Chinaza
I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Ut austin - principles of chemistry. OpenStax CNX. Mar 31, 2016 Download for free at http://legacy.cnx.org/content/col11830/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Ut austin - principles of chemistry' conversation and receive update notifications?

Ask