<< Chapter < Page Chapter >> Page >
The figure illustrates four ways to represent molecules for molecules of methane, ethane, and pentane. In the first row of the figure, Lewis structural formulas show element symbols and bonds between atoms. Methane has a central C atom with four H atoms bonded to it. Ethane has a C atom with three H atoms bonded to it. The C atom is also bonded to another C atom with three H atoms bonded to it. Pentane has a C atom with three H atoms bonded to it. The C atom is bonded to another C atom with two H atoms bonded to it. The C atom is bonded to another C atom with two H atoms bonded to it. The C atom is bonded to another C atom with two H atoms bonded to it. The C atom is bonded to another C atom with three H atoms bonded to it. In the second row, ball-and-stick models are shown. In these representations, bonds are represented with sticks, and elements are represented with balls. Carbon atoms are black and hydrogen atoms are white in this image. In the third row, space-filling models are shown. In these models, atoms are enlarged and pushed together, without sticks to represent bonds. The molecule names and structural formulas are provided in the fourth row. Methane is named and represented with a condensed structural formula as C H subscript 4. Ethane is named and represented with two structural formulas C H subscript 3 C H subscript 3 and C subscript 2 H subscript 6. Pentane is named and represented as both C H subscript 3 C H subscript 2 C H subscript 2 C H subscript 2 C H subscript 3 and C subscript 5 H subscript 12.
Pictured are the Lewis structures, ball-and-stick models, and space-filling models for molecules of methane, ethane, and pentane.

A common method used by organic chemists to simplify the drawings of larger molecules is to use a skeletal structure    (also called a line-angle structure). In this type of structure, carbon atoms are not symbolized with a C, but represented by each end of a line or bend in a line. Hydrogen atoms are not drawn if they are attached to a carbon. Other atoms besides carbon and hydrogen are represented by their elemental symbols. [link] shows three different ways to draw the same structure.

In this figure, a hydrocarbon molecule is shown in three ways. First, an expanded formula shows all individual carbon atoms, hydrogen atoms, and bonds in a branched hydrocarbon molecule. An initial C atom is bonded to three H atoms. The C atom is bonded to another C atom in the chain. This second C atom is bonded to one H atom and another C atom above the chain. The C atom bonded above the second C atom in the chain is bonded to three H atoms. The second C atom in the chain is bonded to a third C atom in the chain. This third C atom is bonded to on H atom and another C atom below the chain. This C atom is bonded to two H atoms and another C atom below the chain. This second C atom below the chain is bonded to three H atoms. The third C atom in the chain is bonded to a fourth C atom in the chain. The fourth C atom is bonded to two H atoms and a fifth C atom. The fifth C atom is bonded to two H atoms and a sixth C atom. The sixth C atom is bonded to three H atoms. Second, a condensed formula shows each carbon atom of the molecule in clusters with the hydrogen atoms bonded to it, leaving C H, C H subscript 2, and C H subscript 3 groups with bonds between them. The structure shows a C H subscript 3 group bonded to a C H group. The C H group is bonded above to a C H subscript 3 group. The C H group is also bonded to another C H group. This C H group is bonded to a C H subscript 2 group below and a C H subscript 3 group below that. This C H group is also bonded to a C H subscript 2 group which is bonded to another C H subscript 2 group. This C H subscript 2 group is bonded to a final C H subscript 2 group. The final structure in the figure is a skeletal structure which includes only line segments arranged to indicate the structure of the molecule.
The same structure can be represented three different ways: an expanded formula, a condensed formula, and a skeletal structure.

Drawing skeletal structures

Draw the skeletal structures for these two molecules:

Figure a shows a branched molecule with C H subscript 3 bonded to C with C H subscript 3 groups bonded both above and below it. To the right of the central C, a C H is bonded which has a C H subscript 3 group bonded above and to the right and below and to the right. Figure b shows a straight chain molecule composed of C H subscript 3 C H subscript 2 C H subscript 2 C H subscript 2 C H subscript 2 C H subscript 2 C H subscript 3.

Solution

Each carbon atom is converted into the end of a line or the place where lines intersect. All hydrogen atoms attached to the carbon atoms are left out of the structure (although we still need to recognize they are there):

Figure a shows a branched skeleton structure that looks like a plus sign with line segments extending up and to the right and down and to the left of the rightmost point of the plus sign. Figure b appears in a zig zag pattern made with six line segments. The segments rise, fall, rise, fall, rise, and fall moving left to right across the figure.

Check your learning

Draw the skeletal structures for these two molecules:

Figure a shows five C H subscript 2 groups and one C H group bonded in a hexagonal ring. A C H subscript 3 group appears above and to the right of the ring, bonded to the ring on the C H group appearing at the upper right portion of the ring. In b, a straight chain molecule composed of C H subscript 3 C H subscript 2 C H subscript 2 C H subscript 2 C H subscript 3 is shown.

Answer:


In a, a hexagon with a vertex at the top is shown. The vertex just to the right has a line segment attached that extends up and to the right. In b, a zig zag pattern is shown in which line segments rise, fall, rise, fall, and rise moving left to right.
Got questions? Get instant answers now!

Interpreting skeletal structures

Identify the chemical formula of the molecule represented here:

This figure shows a pentagon with a vertex pointing right, from which a line segment extends that has two line segments attached at its right end, one extending up and to the right, and the other extending down and to the right.

Solution

There are eight places where lines intersect or end, meaning that there are eight carbon atoms in the molecule. Since we know that carbon atoms tend to make four bonds, each carbon atom will have the number of hydrogen atoms that are required for four bonds. This compound contains 16 hydrogen atoms for a molecular formula of C 8 H 16 .

Location of the hydrogen atoms:

In this figure a ring composed of four C H subscript 2 groups and one C H group in a pentagonal shape is shown. From the C H group, which is at the right side of the pentagon, a C H is bonded. From this C H, a C H subscript 3 group is bonded above and to the right and a second is bonded below and to the right.

Check your learning

Identify the chemical formula of the molecule represented here:

A skeleton model is shown with a zig zag pattern that rises, falls, rises, and falls again left to right through the center of the molecule. From the two risen points, line segments extend both up and down, creating four branches.

Answer:

C 9 H 20

Got questions? Get instant answers now!

All alkanes are composed of carbon and hydrogen atoms, and have similar bonds, structures, and formulas; noncyclic alkanes all have a formula of C n H 2n+2 . The number of carbon atoms present in an alkane has no limit. Greater numbers of atoms in the molecules will lead to stronger intermolecular attractions (dispersion forces) and correspondingly different physical properties of the molecules. Properties such as melting point and boiling point ( [link] ) usually change smoothly and predictably as the number of carbon and hydrogen atoms in the molecules change.

Properties of Some Alkanes Physical properties for C 4 H 10 and heavier molecules are those of the normal isomer , n -butane, n -pentane, etc.
Alkane Molecular Formula Melting Point (°C) Boiling Point (°C) Phase at STP STP indicates a temperature of 0 °C and a pressure of 1 atm. Number of Structural Isomers
methane CH 4 –182.5 –161.5 gas 1
ethane C 2 H 6 –183.3 –88.6 gas 1
propane C 3 H 8 –187.7 –42.1 gas 1
butane C 4 H 10 –138.3 –0.5 gas 2
pentane C 5 H 12 –129.7 36.1 liquid 3
hexane C 6 H 14 –95.3 68.7 liquid 5
heptane C 7 H 16 –90.6 98.4 liquid 9
octane C 8 H 18 –56.8 125.7 liquid 18
nonane C 9 H 20 –53.6 150.8 liquid 35
decane C 10 H 22 –29.7 174.0 liquid 75
tetradecane C 14 H 30 5.9 253.5 solid 1858
octadecane C 18 H 38 28.2 316.1 solid 60,523

Hydrocarbons with the same formula, including alkanes, can have different structures. For example, two alkanes have the formula C 4 H 10 : They are called n -butane and 2-methylpropane (or isobutane), and have the following Lewis structures:

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Ut austin - principles of chemistry. OpenStax CNX. Mar 31, 2016 Download for free at http://legacy.cnx.org/content/col11830/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Ut austin - principles of chemistry' conversation and receive update notifications?

Ask