<< Chapter < Page Chapter >> Page >

Calculating rest mass: a small mass increase due to energy input

A car battery is rated to be able to move 600 ampere-hours (A·h) of charge at 12.0 V. (a) Calculate the increase in rest mass of such a battery when it is taken from being fully depleted to being fully charged. (b) What percent increase is this, given the battery’s mass is 20.0 kg?

Strategy

In part (a), we first must find the energy stored in the battery, which equals what the battery can supply in the form of electrical potential energy. Since PE elec = qV size 12{"PE" rSub { size 8{"elec"} } = ital "qV"} {} , we have to calculate the charge q size 12{q} {} in 600 A·h , which is the product of the current I and the time t size 12{t} {} . We then multiply the result by 12.0 V. We can then calculate the battery’s increase in mass using Δ E = PE elec = ( Δ m ) c 2 size 12{ΔE="PE" rSub { size 8{"elec"} } = \( Δm \) c rSup { size 8{2} } } {} . Part (b) is a simple ratio converted to a percentage.

Solution for (a)

  1. Identify the knowns. I t = 600 A h ; V = 12 . 0 V size 12{V="12" "." 0`V} {} ; c = 3 . 00 × 10 8 m/s
  2. Identify the unknown. Δ m size 12{m} {}
  3. Choose the appropriate equation. PE elec = ( Δ m ) c 2
  4. Rearrange the equation to solve for the unknown. Δ m = PE elec c 2 size 12{m= { {"PE" rSub { size 8{"elec"} } } over {c rSup { size 8{2} } } } } {}
  5. Plug the knowns into the equation.
    Δ m = PE elec c 2 = qV c 2 = ( I t ) V c 2 = ( 600 A h ) ( 12.0 V ) ( 3.00 × 10 8 ) 2 .

    Write amperes A as coulombs per second (C/s), and convert hours to seconds.

    Δ m = ( 600 C/s h 3600 s 1 h ( 12.0 J/C ) ( 3.00 × 10 8 m/s ) 2 = ( 2.16 × 10 6 C ) ( 12.0 J/C ) ( 3.00 × 10 8 m/s ) 2

    Using the conversion 1 kg m 2 /s 2 = 1 J , we can write the mass as

    Δ m = 2.88 × 10 10 kg .

Solution for (b)

  1. Identify the knowns. Δ m = 2.88 × 10 10 kg ; m = 20.0 kg
  2. Identify the unknown. % change
  3. Choose the appropriate equation. % increase = Δ m m × 100% size 12{%" increase"= { {Δm} over {m} } times "100"%} {}
  4. Plug the knowns into the equation.
    % increase = Δ m m × 100% = 2.88 × 10 10 kg 20.0 kg × 100% = 1.44 × 10 9 % .

Discussion

Both the actual increase in mass and the percent increase are very small, since energy is divided by c 2 size 12{c rSup { size 8{2} } } {} , a very large number. We would have to be able to measure the mass of the battery to a precision of a billionth of a percent, or 1 part in 10 11 , to notice this increase. It is no wonder that the mass variation is not readily observed. In fact, this change in mass is so small that we may question how you could verify it is real. The answer is found in nuclear processes in which the percentage of mass destroyed is large enough to be measured. The mass of the fuel of a nuclear reactor, for example, is measurably smaller when its energy has been used. In that case, stored energy has been released (converted mostly to heat and electricity) and the rest mass has decreased. This is also the case when you use the energy stored in a battery, except that the stored energy is much greater in nuclear processes, making the change in mass measurable in practice as well as in theory.

Kinetic energy and the ultimate speed limit

Kinetic energy is energy of motion. Classically, kinetic energy has the familiar expression 1 2 mv 2 size 12{ { {1} over {2} } ital "mv" rSup { size 8{2} } } {} . The relativistic expression for kinetic energy is obtained from the work-energy theorem. This theorem states that the net work on a system goes into kinetic energy. If our system starts from rest, then the work-energy theorem is

W net = KE . size 12{W rSub { size 8{"net"} } ="KE"} {}

Relativistically, at rest we have rest energy E 0 = mc 2 . The work increases this to the total energy E = γmc 2 . Thus,

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, General physics i phy2201ca. OpenStax CNX. Jul 03, 2013 Download for free at http://legacy.cnx.org/content/col11523/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'General physics i phy2201ca' conversation and receive update notifications?

Ask