<< Chapter < Page Chapter >> Page >
  • Calculate the Reynolds number for an object moving through a fluid.
  • Explain whether the Reynolds number indicates laminar or turbulent flow.
  • Describe the conditions under which an object has a terminal speed.

A moving object in a viscous fluid is equivalent to a stationary object in a flowing fluid stream. (For example, when you ride a bicycle at 10 m/s in still air, you feel the air in your face exactly as if you were stationary in a 10-m/s wind.) Flow of the stationary fluid around a moving object may be laminar, turbulent, or a combination of the two. Just as with flow in tubes, it is possible to predict when a moving object creates turbulence. We use another form of the Reynolds number N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} , defined for an object moving in a fluid to be

N R = ρ vL η (object in fluid), size 12{ { {N}} sup { ' } rSub { size 8{R} } = { {ρ ital "vL"} over {η} } } {}

where L size 12{L} {} is a characteristic length of the object (a sphere’s diameter, for example), ρ size 12{ρ} {} the fluid density, η size 12{η} {} its viscosity, and v size 12{v} {} the object’s speed in the fluid. If N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} is less than about 1, flow around the object can be laminar, particularly if the object has a smooth shape. The transition to turbulent flow occurs for N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} between 1 and about 10, depending on surface roughness and so on. Depending on the surface, there can be a turbulent wake behind the object with some laminar flow over its surface. For an N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} between 10 and 10 6 size 12{"10" rSup { size 8{6} } } {} , the flow may be either laminar or turbulent and may oscillate between the two. For N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} greater than about 10 6 size 12{"10" rSup { size 8{6} } } {} , the flow is entirely turbulent, even at the surface of the object. (See [link] .) Laminar flow occurs mostly when the objects in the fluid are small, such as raindrops, pollen, and blood cells in plasma.

Does a ball have a turbulent wake?

Calculate the Reynolds number N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} for a ball with a 7.40-cm diameter thrown at 40.0 m/s.

Strategy

We can use N R = ρ vL η size 12{ { {N}} sup { ' } rSub { size 8{R} } = { {ρ ital "vL"} over {η} } } {} to calculate N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} , since all values in it are either given or can be found in tables of density and viscosity.

Solution

Substituting values into the equation for N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} yields

N R = ρ vL η = ( 1 . 29 kg/m 3 ) ( 40.0 m/s ) ( 0.0740 m ) 1.81 × 10 5 1.00 Pa s = 2.11 × 10 5 .

Discussion

This value is sufficiently high to imply a turbulent wake. Most large objects, such as airplanes and sailboats, create significant turbulence as they move. As noted before, the Bernoulli principle gives only qualitatively-correct results in such situations.

One of the consequences of viscosity is a resistance force called viscous drag     F V size 12{F rSub { size 8{V} } } {} that is exerted on a moving object. This force typically depends on the object’s speed (in contrast with simple friction). Experiments have shown that for laminar flow ( N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} less than about one) viscous drag is proportional to speed, whereas for N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} between about 10 and 10 6 size 12{"10" rSup { size 8{6} } } {} , viscous drag is proportional to speed squared. (This relationship is a strong dependence and is pertinent to bicycle racing, where even a small headwind causes significantly increased drag on the racer. Cyclists take turns being the leader in the pack for this reason.) For N R size 12{ { {N}} sup { ' } rSub { size 8{R} } } {} greater than 10 6 size 12{"10" rSup { size 8{6} } } {} , drag increases dramatically and behaves with greater complexity. For laminar flow around a sphere, F V size 12{F rSub { size 8{V} } } {} is proportional to fluid viscosity η size 12{η} {} , the object’s characteristic size L size 12{L} {} , and its speed v size 12{v} {} . All of which makes sense—the more viscous the fluid and the larger the object, the more drag we expect. Recall Stoke’s law F S = 6 πrηv size 12{F rSub { size 8{S} } =6πrηv} {} . For the special case of a small sphere of radius R size 12{R} {} moving slowly in a fluid of viscosity η size 12{η} {} , the drag force F S size 12{F rSub { size 8{S} } } {} is given by

Questions & Answers

what is defense mechanism
Chinaza Reply
what is defense mechanisms
Chinaza
I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics ii. OpenStax CNX. Nov 29, 2012 Download for free at http://legacy.cnx.org/content/col11458/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics ii' conversation and receive update notifications?

Ask