<< Chapter < Page Chapter >> Page >

The pair { X , Y } has the joint distribution (in m-file npr08_07.m ):

P ( X = t , Y = u )
t = -3.1 -0.5 1.2 2.4 3.7 4.9
u = 7.5 0.0090 0.0396 0.0594 0.0216 0.0440 0.0203
4.1 0.0495 0 0.1089 0.0528 0.0363 0.0231
-2.0 0.0405 0.1320 0.0891 0.0324 0.0297 0.0189
-3.8 0.0510 0.0484 0.0726 0.0132 0 0.0077

Let Z = g ( X , Y ) = 3 X 2 + 2 X Y - Y 2 . Determine E [ Z ] and E [ Z 2 ] .

npr08_07 Data are in X, Y, P jcalc- - - - - - - - - G = 3*t.^2 + 2*t.*u - u.^2;EG = total(G.*P) EG = 5.2975ez2 = total(G.^2.*P) EG2 = 1.0868e+03[Z,PZ] = csort(G,P); % AlternateEZ = Z*PZ' EZ = 5.2975EZ2 = (Z.^2)*PZ' EZ2 = 1.0868e+03
Got questions? Get instant answers now!

For the pair { X , Y } in [link] , let

W = g X , Y ) = X for X + Y 4 2 Y for X + Y > 4 = I M ( X , Y ) X + I M c ( X , Y ) 2 Y

Determine E [ W ] and E [ W 2 ] .

H = t.*(t+u<=4) + 2*u.*(t+u>4); EH = total(H.*P)EH = 4.7379 EH2 = total(H.^2.*P)EH2 = 61.4351 [W,PW]= csort(H,P); % Alternate EW = W*PW'EW = 4.7379 EW2 = (W.^2)*PW'EW2 = 61.4351
Got questions? Get instant answers now!

For the distributions in Exercises 37-41 below

  1. Determine analytically E [ Z ] and E [ Z 2 ] .
  2. Use a discrete approximation to calculate the same quantities.

f X Y ( t , u ) = 3 88 ( 2 t + 3 u 2 ) for 0 t 2 , 0 u 1 + t (see [link] ).

Z = I [ 0 , 1 ] ( X ) 4 X + I ( 1 , 2 ] ( X ) ( X + Y )
E [ Z ] = 3 88 0 1 0 1 + t 4 t ( 2 t + 3 u 2 ) d u d t + 3 88 1 2 0 1 + t ( t + u ) ( 2 t + 3 u 2 ) d u d t = 5649 1760
E [ Z 2 ] = 3 88 0 1 0 1 + t ( 4 t ) 2 ( 2 t + 3 u 2 ) d u d t + 3 88 1 2 0 1 + t ( t + u ) 2 ( 2 t + 3 u 2 ) d u d t = 4881 440
tuappr: [0 2] [0 3]200 300 (3/88)*(2*t+3*u.^2).*(u<=1+t) G = 4*t.*(t<=1) + (t + u).*(t>1); EG = total(G.*P)EG = 3.2086 EG2 = total(G.^2.*P)EG2 = 11.0872
Got questions? Get instant answers now!

f X Y ( t , u ) = 24 11 t u for 0 t 2 , 0 u min { 1 , 2 - t } (see [link] ).

Z = I M ( X , Y ) 1 2 X + I M c ( X , Y ) Y 2 , M = { ( t , u ) : u > t }
E [ Z ] = 12 11 0 1 t 1 t 2 u d u d t + 24 11 0 1 0 t t u 3 d u d t + 24 11 1 2 0 2 - t t u 3 d u d t = 16 55
E [ Z 2 ] = 6 11 0 1 t 1 t 3 u d u d t + 24 11 0 1 0 t t u 5 d u d t + 24 11 1 2 0 2 - t t u 5 d u d t = 39 308
tuappr: [0 2] [0 1]400 200 (24/11)*t.*u.*(u<=min(1,2-t)) G = (1/2)*t.*(u>t) + u.^2.*(u<=t); EZ = 0.2920 EZ2 = 0.1278
Got questions? Get instant answers now!

f X Y ( t , u ) = 3 23 ( t + 2 u ) for 0 t 2 , 0 u max { 2 - t , t } (see [link] ).

Z = I M ( X , Y ) ( X + Y ) + I M c ( X , Y ) 2 Y , M = { ( t , u ) : max ( t , u ) 1 }
E [ Z ] = 3 23 0 1 0 1 ( t + u ) ( t + 2 u ) d u d t + 3 23 0 1 1 2 - t 2 u ( t + 2 u ) d u d t + 3 23 1 2 1 t 2 u ( t + 2 u ) d u d t = 175 92
E [ Z 2 ] = 3 23 0 1 0 1 ( t + u ) 2 ( t + 2 u ) d u d t + 3 23 0 1 1 2 - t 4 u 2 ( t + 2 u ) d u d t + 3 23 1 2 1 t 4 u 2 ( t + 2 u ) d u d t = 2063 460
tuappr: [0 2] [0 2]400 400 (3/23)*(t+2*u).*(u<=max(2-t,t)) M = max(t,u)<=1; G = (t+u).*M + 2*u.*(1-M);EZ = total(G.*P) EZ = 1.9048EZ2 = total(G.^2.*P) EZ2 = 4.4963
Got questions? Get instant answers now!

f X Y ( t , u ) = 12 179 ( 3 t 2 + u ) , for 0 t 2 , 0 u min { 2 , 3 - t } (see [link] ).

Z = I M ( X , Y ) ( X + Y ) + I M c ( X , Y ) 2 Y 2 , M = { ( t , u ) : t 1 , u 1 }
E [ Z ] = 12 179 0 1 1 2 ( t + u ) ( 3 t 2 + u ) d u d t + 12 179 0 1 0 1 2 u 2 ( 3 t 2 + u ) d u d t +
12 179 1 2 0 3 - t 2 u 2 ( 3 t 2 + u ) d u d t = 1422 895
E [ Z 2 ] = 12 179 0 1 1 2 ( t + u ) 2 ( 3 t 2 + u ) d u d t + 12 179 0 1 0 1 4 u 4 ( 3 t 2 + u ) d u d t +
12 179 1 2 0 3 - t 4 u 4 ( 3 t 2 + u ) d u d t = 28296 6265
tuappr: [0 2] [0 2]400 400 (12/179)*(3*t.^2 + u).*(u<= min(2,3-t)) M = (t<=1)&(u>=1); G = (t + u).*M + 2*u.^2.*(1 - M);EZ = total(G.*P) EZ = 1.5898EZ2 = total(G.^2.*P) EZ2 = 4.5224
Got questions? Get instant answers now!

f X Y ( t , u ) = 12 227 ( 3 t + 2 t u ) , for 0 t 2 , 0 u min { 1 + t , 2 } (see [link] ).

Z = I M ( X , Y ) X + I M c ( X , Y ) X Y , M = { ( t , u ) : u min ( 1 , 2 - t ) }
E [ Z ] = 12 227 0 1 0 1 t ( 3 t + 2 t u ) d u d t + 12 227 1 2 0 2 - t t ( 3 t + 2 t u ) d u d t +
12 227 0 1 1 1 + t t u ( 3 t + 2 t u ) d u d t + 12 227 1 2 2 - t 2 t u ( 3 t + 2 t u ) d u d t = 5774 3405
E [ Z 2 ] = 56673 15890
tuappr: [0 2] [0 2]400 400 (12/227)*(3*t + 2*t.*u).*(u<= min(1+t,2)) M = u<= min(1,2-t); G = t.*M + t.*u.*(1 - M);EZ = total(G.*P) EZ = 1.6955EZ2 = total(G.^2.*P) EZ2 = 3.5659
Got questions? Get instant answers now!

The class { X , Y , Z } is independent. (See Exercise 16 from "Problems on Functions of Random Variables", m-file npr10_16.m )

          X = - 2 I A + I B + 3 I C . Minterm probabilities are (in the usual order)

0 . 255 0 . 025 0 . 375 0 . 045 0 . 108 0 . 012 0 . 162 0 . 018

          Y = I D + 3 I E + I F - 3 . The class { D , E , F } is independent with

P ( D ) = 0 . 32 P ( E ) = 0 . 56 P ( F ) = 0 . 40

          Z has distribution

Value -1.3 1.2 2.7 3.4 5.8
Probability 0.12 0.24 0.43 0.13 0.08

W = X 2 + 3 X Y 2 - 3 Z . Determine E [ W ] and E [ W 2 ] .

npr10_16 Data are in cx, pmx, cy, pmy, Z, PZ [X,PX]= canonicf(cx,pmx); [Y,PY]= canonicf(cy,pmy); icalc3input: X, Y, Z, PX, PY, PZ - - - - - - -Use array operations on matrices X, Y, Z, PX, PY, PZ, t, u, v, and PG = t.^2 + 3*t.*u.^2 - 3*v; [W,PW]= csort(G,P); EW = W*PW'EW = -1.8673 EW2 = (W.^2)*PW'EW2 = 426.8529
Got questions? Get instant answers now!

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Applied probability. OpenStax CNX. Aug 31, 2009 Download for free at http://cnx.org/content/col10708/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Applied probability' conversation and receive update notifications?

Ask