-
Home
- Applied probability
- Mathematical expectation
- Problems on mathematical
The pair
has the joint distribution (in m-file
npr08_07.m ):
t = |
-3.1 |
-0.5 |
1.2 |
2.4 |
3.7 |
4.9 |
u = 7.5 |
0.0090 |
0.0396 |
0.0594 |
0.0216 |
0.0440 |
0.0203 |
4.1 |
0.0495 |
0 |
0.1089 |
0.0528 |
0.0363 |
0.0231 |
-2.0 |
0.0405 |
0.1320 |
0.0891 |
0.0324 |
0.0297 |
0.0189 |
-3.8 |
0.0510 |
0.0484 |
0.0726 |
0.0132 |
0 |
0.0077 |
Let
. Determine
and
.
npr08_07 Data are in X, Y, P
jcalc- - - - - - - - -
G = 3*t.^2 + 2*t.*u - u.^2;EG = total(G.*P)
EG = 5.2975ez2 = total(G.^2.*P)
EG2 = 1.0868e+03[Z,PZ] = csort(G,P); % AlternateEZ = Z*PZ'
EZ = 5.2975EZ2 = (Z.^2)*PZ'
EZ2 = 1.0868e+03
Got questions? Get instant answers now!
For the pair
in
[link] , let
Determine
and
.
H = t.*(t+u<=4) + 2*u.*(t+u>4);
EH = total(H.*P)EH = 4.7379
EH2 = total(H.^2.*P)EH2 = 61.4351
[W,PW]= csort(H,P); % Alternate
EW = W*PW'EW = 4.7379
EW2 = (W.^2)*PW'EW2 = 61.4351
Got questions? Get instant answers now!
For the distributions in Exercises 37-41 below
- Determine analytically
and
.
- Use a discrete approximation to calculate the same quantities.
for
,
(see
[link] ).
tuappr: [0 2] [0 3]200 300 (3/88)*(2*t+3*u.^2).*(u<=1+t)
G = 4*t.*(t<=1) + (t + u).*(t>1);
EG = total(G.*P)EG = 3.2086
EG2 = total(G.^2.*P)EG2 = 11.0872
Got questions? Get instant answers now!
for
,
(see
[link] ).
tuappr: [0 2] [0 1]400 200 (24/11)*t.*u.*(u<=min(1,2-t))
G = (1/2)*t.*(u>t) + u.^2.*(u<=t);
EZ = 0.2920 EZ2 = 0.1278
Got questions? Get instant answers now!
for
,
(see
[link] ).
tuappr: [0 2] [0 2]400 400 (3/23)*(t+2*u).*(u<=max(2-t,t))
M = max(t,u)<=1;
G = (t+u).*M + 2*u.*(1-M);EZ = total(G.*P)
EZ = 1.9048EZ2 = total(G.^2.*P)
EZ2 = 4.4963
Got questions? Get instant answers now!
, for
,
(see
[link] ).
tuappr: [0 2] [0 2]400 400 (12/179)*(3*t.^2 + u).*(u<= min(2,3-t))
M = (t<=1)&(u>=1);
G = (t + u).*M + 2*u.^2.*(1 - M);EZ = total(G.*P)
EZ = 1.5898EZ2 = total(G.^2.*P)
EZ2 = 4.5224
Got questions? Get instant answers now!
, for
,
(see
[link] ).
tuappr: [0 2] [0 2]400 400 (12/227)*(3*t + 2*t.*u).*(u<= min(1+t,2))
M = u<= min(1,2-t);
G = t.*M + t.*u.*(1 - M);EZ = total(G.*P)
EZ = 1.6955EZ2 = total(G.^2.*P)
EZ2 = 3.5659
Got questions? Get instant answers now!
The class
is independent. (See
Exercise 16 from "Problems on Functions of Random Variables", m-file
npr10_16.m )
. Minterm probabilities are (in the usual order)
. The class
is independent with
Z has distribution
Value |
-1.3 |
1.2 |
2.7 |
3.4 |
5.8 |
Probability |
0.12 |
0.24 |
0.43 |
0.13 |
0.08 |
. Determine
and
.
npr10_16 Data are in cx, pmx, cy, pmy, Z, PZ
[X,PX]= canonicf(cx,pmx);
[Y,PY]= canonicf(cy,pmy);
icalc3input: X, Y, Z, PX, PY, PZ
- - - - - - -Use array operations on matrices X, Y, Z,
PX, PY, PZ, t, u, v, and PG = t.^2 + 3*t.*u.^2 - 3*v;
[W,PW]= csort(G,P);
EW = W*PW'EW = -1.8673
EW2 = (W.^2)*PW'EW2 = 426.8529
Got questions? Get instant answers now!
Source:
OpenStax, Applied probability. OpenStax CNX. Aug 31, 2009 Download for free at http://cnx.org/content/col10708/1.6
Google Play and the Google Play logo are trademarks of Google Inc.