<< Chapter < Page Chapter >> Page >

For the joint densities in Exercises 20-32 below

  1. Determine analytically E [ X ] , E [ Y ] , E [ X 2 ] , E [ Y 2 ] , and E [ X Y ] .
  2. Use a discrete approximation for E [ X ] , E [ Y ] , E [ X 2 ] , E [ Y 2 ] , and E [ X Y ] .

(See Exercise 10 from "Problems On Random Vectors and Joint Distributions"). f X Y ( t , u ) = 1 for 0 t 1 , 0 u 2 ( 1 - t ) .

f X ( t ) = 2 ( 1 - t ) , 0 t 1 , f Y ( u ) = 1 - u / 2 , 0 u 2
E [ X ] = 0 1 2 t ( 1 - t ) d t = 1 / 3 , E [ Y ] = 2 / 3 , E [ X 2 ] = 1 / 6 , E [ Y 2 ] = 2 / 3
E [ X Y ] = 0 1 0 2 ( 1 - t ) t u d u d t = 1 / 6
tuappr: [0 1] [0 2]200 400 u<=2*(1-t) EX = 0.3333 EY = 0.6667 EX2 = 0.1667 EY2 = 0.6667EXY = 0.1667 (use t, u, P)
Got questions? Get instant answers now!

(See Exercise 11 from "Problems On Random Vectors and Joint Distributions"). f X Y ( t , u ) = 1 / 2 on the square with vertices at ( 1 , 0 ) , ( 2 , 1 ) , ( 1 , 2 ) , ( 0 , 1 ) .

f X ( t ) = f Y ( t ) = I [ 0 , 1 ] ( t ) t + I ( 1 , 2 ] ( t ) ( 2 - t )
E [ X ] = E [ Y ] = 0 1 t 2 d t + 1 t ( 2 t - t 2 ) d t = 1 , E [ X 2 ] = E [ Y 2 ] = 7 / 6
E [ X Y ] = ( 1 / 2 ) 0 1 1 - t 1 + t d u d t + ( 1 / 2 ) 1 2 t - 1 3 - t d u d t = 1
tuappr: [0 2] [0 2]200 200 0.5*(u<=min(t+1,3-t))&(u>= max(1-t,t-1)) EX = 1.0000 EY = 1.0002 EX2 = 1.1684 EY2 = 1.1687 EXY = 1.0002
Got questions? Get instant answers now!

(See Exercise 12 from "Problems On Random Vectors and Joint Distributions"). f X Y ( t , u ) = 4 t ( 1 - u ) for 0 t 1 , 0 u 1 .

f X ( t ) = 2 t , 0 t 1 , f Y ( u ) = 2 ( 1 - u ) , 0 u 1
E [ X ] = 2 / 3 , E [ Y ] = 1 / 3 , E [ X 2 ] = 1 / 2 , E [ Y 2 ] = 1 / 6 E [ X Y ] = 2 / 9
tuappr: [0 1] [0 1]200 200 4*t.*(1-u) EX = 0.6667 EY = 0.3333 EX2 = 0.5000 EY2 = 0.1667 EXY = 0.2222
Got questions? Get instant answers now!

(See Exercise 13 from "Problems On Random Vectors and Joint Distributions"). f X Y ( t , u ) = 1 8 ( t + u ) for 0 t 2 , 0 u 2 .

f X ( t ) = f Y ( t ) = 1 4 ( t + 1 ) , 0 t 2
E [ X ] = E [ Y ] = 1 4 0 2 ( t 2 + t ) d t = 7 6 , E [ X 2 ] = E [ Y 2 ] = 5 / 3
E [ X Y ] = 1 8 0 2 0 2 ( t 2 u + t u 2 ) d u d t = 4 3
tuappr: [0 2] [0 2]200 200 (1/8)*(t+u) EX = 1.1667 EY = 1.1667 EX2 = 1.6667 EY2 = 1.6667 EXY = 1.3333
Got questions? Get instant answers now!

(See Exercise 14 from "Problems On Random Vectors and Joint Distributions"). f X Y ( t , u ) = 4 u e - 2 t for 0 t , 0 u 1 .

f X ( t ) = 2 e - 2 t , 0 t , f Y ( u ) = 2 u , 0 u 1
E [ X ] = 0 2 t e - 2 t d t = 1 2 , E [ Y ] = 2 3 , E [ X 2 ] = 1 2 , E [ Y 2 ] = 1 2 , E [ X Y ] = 1 3
tuappr: [0 6] [0 1]600 200 4*u.*exp(-2*t) EX = 0.5000 EY = 0.6667 EX2 = 0.4998 EY2 = 0.5000 EXY = 0.3333
Got questions? Get instant answers now!

(See Exercise 15 from "Problems On Random Vectors and Joint Distributions"). f X Y ( t , u ) = 3 88 ( 2 t + 3 u 2 ) for 0 t 2 , 0 u 1 + t .

f X ( t ) = 3 88 ( 1 + t ) ( 1 + 4 t + t 2 ) = 3 88 ( 1 + 5 t + 5 t 2 + t 3 ) , 0 t 2
f Y ( u ) = I [ 0 , 1 ] ( u ) 3 88 ( 6 u 2 + 4 ) + I ( 1 , 3 ] ( u ) 3 88 ( 3 + 2 u + 8 u 2 - 3 u 3 )
E [ X ] = 313 220 , E [ Y ] = 1429 880 , E [ X 2 ] = 49 22 , E [ Y 2 ] = 172 55 , E [ X Y ] = 2153 880
tuappr: [0 2] [0 3]200 300 (3/88)*(2*t + 3*u.^2).*(u<1+t) EX = 1.4229 EY = 1.6202 EX2 = 2.2277 EY2 = 3.1141 EXY = 2.4415
Got questions? Get instant answers now!

(See Exercise 16 from "Problems On Random Vectors and Joint Distributions"). f X Y ( t , u ) = 12 t 2 u on the parallelogram with vertices

( - 1 , 0 ) , ( 0 , 0 ) , ( 1 , 1 ) , ( 0 , 1 )
f X ( t ) = I [ - 1 , 0 ] ( t ) 6 t 2 ( t + 1 ) 2 + I ( 0 , 1 ] ( t ) 6 t 2 ( 1 - t 2 ) , f Y ( u ) = 12 u 3 - 12 u 2 + 4 u , 0 u 1
E [ X ] = 2 5 , E [ Y ] = 11 15 , E [ X 2 ] = 2 5 , E [ Y 2 ] = 3 5 , E [ X Y ] = 2 5
tuappr: [-1 1] [0 1]400 200 12*t.^2.*u.*(u>= max(0,t)).*(u<= min(1+t,1)) EX = 0.4035 EY = 0.7342 EX2 = 0.4016 EY2 = 0.6009 EXY = 0.4021
Got questions? Get instant answers now!

(See Exercise 17 from "Problems On Random Vectors and Joint Distributions"). f X Y ( t , u ) = 24 11 t u for 0 t 2 , 0 u min { 1 , 2 - t } .

f X ( t ) = I [ 0 , 1 ] ( t ) 12 11 t + I ( 1 , 2 ] ( t ) 12 11 t ( 2 - t ) 2 , f Y ( u ) = 12 11 u ( u - 2 ) 2 , 0 u 1
E [ X ] = 52 55 , E [ Y ] = 32 55 , E [ X 2 ] = 57 55 , E [ Y 2 ] = 2 5 , E [ X Y ] = 28 55
tuappr: [0 2] [0 1]400 200 (24/11)*t.*u.*(u<=min(1,2-t)) EX = 0.9458 EY = 0.5822 EX2 = 1.0368 EY2 = 0.4004 EXY = 0.5098
Got questions? Get instant answers now!

(See Exercise 18 from "Problems On Random Vectors and Joint Distributions"). f X Y ( t , u ) = 3 23 ( t + 2 u ) for 0 t 2 , 0 u max { 2 - t , t } .

f X ( t ) = I [ 0 , 1 ] ( t ) 6 23 ( 2 - t ) + I ( 1 , 2 ] ( t ) 6 23 t 2 , f Y ( u ) = I [ 0 , 1 ] ( u ) 6 23 ( 2 u + 1 ) + I ( 1 , 2 ] ( u ) 3 23 ( 4 + 6 u - 4 u 2 )
E [ X ] = 53 46 , E [ Y ] = 22 23 , E [ X 2 ] = 397 230 , E [ Y 2 ] = 261 230 , E [ X Y ] = 251 230
tuappr: [0 2] [0 2]200 200 (3/23)*(t + 2*u).*(u<=max(2-t,t)) EX = 1.1518 EY = 0.9596 EX2 = 1.7251 EY2 = 1.1417 EXY = 1.0944
Got questions? Get instant answers now!

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Applied probability. OpenStax CNX. Aug 31, 2009 Download for free at http://cnx.org/content/col10708/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Applied probability' conversation and receive update notifications?

Ask