<< Chapter < Page Chapter >> Page >
1 Ci = 3 . 70 × 10 10 Bq, size 12{1" Ci"=3 "." "70" times "10" rSup { size 8{"10"} } " Bq"} {}

or 3 . 70 × 10 10 size 12{3 "." "70" times "10" rSup { size 8{"10"} } } {} decays per second. A curie is a large unit of activity, while a becquerel is a relatively small unit. 1 MBq = 100 microcuries ( μ Ci ) size 12{"1 MBq"="100 microcuries " \( μ"Ci" \) } {} . In countries like Australia and New Zealand that adhere more to SI units, most radioactive sources, such as those used in medical diagnostics or in physics laboratories, are labeled in Bq or megabecquerel (MBq).

Intuitively, you would expect the activity of a source to depend on two things: the amount of the radioactive substance present, and its half-life. The greater the number of radioactive nuclei present in the sample, the more will decay per unit of time. The shorter the half-life, the more decays per unit time, for a given number of nuclei. So activity R size 12{R} {} should be proportional to the number of radioactive nuclei, N size 12{N} {} , and inversely proportional to their half-life, t 1 / 2 size 12{t rSub { size 8{1/2} } } {} . In fact, your intuition is correct. It can be shown that the activity of a source is

R = 0 . 693 N t 1 / 2 size 12{R= { {0 "." "693"N} over {t rSub { size 8{1/2} } } } } {}

where N size 12{N} {} is the number of radioactive nuclei present, having half-life t 1 / 2 size 12{t rSub { size 8{1/2} } } {} . This relationship is useful in a variety of calculations, as the next two examples illustrate.

How great is the 14 C size 12{"" lSup { size 8{"14"} } C} {} Activity in living tissue?

Calculate the activity due to 14 C size 12{"" lSup { size 8{"14"} } C} {} in 1.00 kg of carbon found in a living organism. Express the activity in units of Bq and Ci.

Strategy

To find the activity R size 12{R} {} using the equation R = 0 . 693 N t 1 / 2 size 12{R= { {0 "." "693"N} over {t rSub { size 8{1/2} } } } } {} , we must know N size 12{N} {} and t 1 / 2 size 12{t rSub { size 8{1/2} } } {} . The half-life of 14 C size 12{"" lSup { size 8{"14"} } C} {} can be found in Appendix B, and was stated above as 5730 y. To find N size 12{N} {} , we first find the number of 12 C size 12{"" lSup { size 8{"12"} } C} {} nuclei in 1.00 kg of carbon using the concept of a mole. As indicated, we then multiply by 1 . 3 × 10 12 size 12{1 "." 3×"10" rSup { size 8{ +- "12"} } } {} (the abundance of 14 C size 12{"" lSup { size 8{"14"} } C} {} in a carbon sample from a living organism) to get the number of 14 C size 12{"" lSup { size 8{"14"} } C} {} nuclei in a living organism.

Solution

One mole of carbon has a mass of 12.0 g, since it is nearly pure 12 C size 12{"" lSup { size 8{"12"} } C} {} . (A mole has a mass in grams equal in magnitude to A size 12{A} {} found in the periodic table.) Thus the number of carbon nuclei in a kilogram is

N ( 12 C ) = 6.02 × 10 23 mol –1 12.0 g/mol × (1000 g) = 5.02 × 10 25 .

So the number of 14 C size 12{"" lSup { size 8{"14"} } C} {} nuclei in 1 kg of carbon is

N ( 14 C ) = ( 5.02 × 10 25 ) ( 1.3 × 10 −12 ) = 6.52 × 10 13 . size 12{N \( rSup { size 8{"14"} } C \) = \( 5 "." "02" times "10" rSup { size 8{"25"} } \) \( 1 "." 3 times "10" rSup { size 8{ - "12"} } \) =6 "." "52" times "10" rSup { size 8{"13"} } } {}

Now the activity R size 12{R} {} is found using the equation R = 0 . 693 N t 1 / 2 size 12{R= { {0 "." "693"N} over {t rSub { size 8{1/2} } } } } {} .

Entering known values gives

R = 0 . 693 ( 6 . 52 × 10 13 ) 5730 y = 7 . 89 × 10 9 y –1 , size 12{R= { {0 "." "693" \( 6 "." "52"´"10" rSup { size 8{"13"} } \) } over {"5730"" y"} } =7 "." "89"´"10" rSup { size 8{9} } /y} {}

or 7 . 89 × 10 9 size 12{7 "." "89" times "10" rSup { size 8{9} } } {} decays per year. To convert this to the unit Bq, we simply convert years to seconds. Thus,

R = ( 7.89 × 10 9 y –1 ) 1.00 y 3 . 16 × 10 7 s = 250 Bq, size 12{R=7 "." "89"´"10" rSup { size 8{9} } /y cdot { {1 "." "00"" y"} over {3 "." "16"´"10" rSup { size 8{7} } " s"} } ="250"" Bq"} {}

or 250 decays per second. To express R size 12{R} {} in curies, we use the definition of a curie,

R = 250 Bq 3.7 × 10 10 Bq/Ci = 6.76 × 10 9 Ci. size 12{R= { {"250"" Bq"} over {3 "." 7´"10" rSup { size 8{"10"} } " Bq/Ci"} } =6 "." "75"´"10" rSup { size 8{-9} } " Ci"} {}

Thus,

R = 6.76 nCi. size 12{R=6 "." "75" "nCi"} {}

Discussion

Our own bodies contain kilograms of carbon, and it is intriguing to think there are hundreds of 14 C size 12{"" lSup { size 8{"14"} } C} {} decays per second taking place in us. Carbon-14 and other naturally occurring radioactive substances in our bodies contribute to the background radiation we receive. The small number of decays per second found for a kilogram of carbon in this example gives you some idea of how difficult it is to detect 14 C size 12{"" lSup { size 8{"14"} } C} {} in a small sample of material. If there are 250 decays per second in a kilogram, then there are 0.25 decays per second in a gram of carbon in living tissue. To observe this, you must be able to distinguish decays from other forms of radiation, in order to reduce background noise. This becomes more difficult with an old tissue sample, since it contains less 14 C size 12{"" lSup { size 8{"14"} } C} {} , and for samples more than 50 thousand years old, it is impossible.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 8

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Concepts of physics. OpenStax CNX. Aug 25, 2015 Download for free at https://legacy.cnx.org/content/col11738/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concepts of physics' conversation and receive update notifications?

Ask