<< Chapter < Page Chapter >> Page >
  • Define buoyant force.
  • State Archimedes’ principle.
  • Understand why objects float or sink.
  • Understand the relationship between density and Archimedes’ principle.

When you rise from lounging in a warm bath, your arms feel strangely heavy. This is because you no longer have the buoyant support of the water. Where does this buoyant force come from? Why is it that some things float and others do not? Do objects that sink get any support at all from the fluid? Is your body buoyed by the atmosphere, or are only helium balloons affected? (See [link] .)

In figures a and b, an anchor and submarine experience buoyancy due to water. In figure c, helium-filled balloons float due to the buoyancy of air.
(a) Even objects that sink, like this anchor, are partly supported by water when submerged. (b) Submarines have adjustable density (ballast tanks) so that they may float or sink as desired. (credit: Allied Navy) (c) Helium-filled balloons tug upward on their strings, demonstrating air’s buoyant effect. (credit: Crystl)

Answers to all these questions, and many others, are based on the fact that pressure increases with depth in a fluid. This means that the upward force on the bottom of an object in a fluid is greater than the downward force on the top of the object. There is a net upward, or buoyant force    on any object in any fluid. (See [link] .) If the buoyant force is greater than the object’s weight, the object will rise to the surface and float. If the buoyant force is less than the object’s weight, the object will sink. If the buoyant force equals the object’s weight, the object will remain suspended at that depth. The buoyant force is always present whether the object floats, sinks, or is suspended in a fluid.

Buoyant force

The buoyant force is the net upward force on any object in any fluid.

A cylinder of cross-sectional area A experiences an upward force F sub 2 on the bottom of the cylinder and a downward force F sub 1 on its top. Buoyant force is due to the difference between the upward force on the bottom of the cylinder and the downward force on its top.
Pressure due to the weight of a fluid increases with depth since P = hρg size 12{P=hρg} {} . This pressure and associated upward force on the bottom of the cylinder are greater than the downward force on the top of the cylinder. Their difference is the buoyant force F B size 12{F rSub { size 8{B} } } {} . (Horizontal forces cancel.)

Just how great is this buoyant force? To answer this question, think about what happens when a submerged object is removed from a fluid, as in [link] .

An object immersed in a fluid rises if its buoyant force is greater than its weight and sinks if its buoyant force is less than its weight. By Archimedes’ principle the buoyant force equals the weight of the fluid displaced.
(a) An object submerged in a fluid experiences a buoyant force F B size 12{F rSub { size 8{B} } } {} . If F B size 12{F rSub { size 8{B} } } {} is greater than the weight of the object, the object will rise. If F B size 12{F rSub { size 8{B} } } {} is less than the weight of the object, the object will sink. (b) If the object is removed, it is replaced by fluid having weight w fl size 12{w rSub { size 8{"fl"} } } {} . Since this weight is supported by surrounding fluid, the buoyant force must equal the weight of the fluid displaced. That is, F B = w fl size 12{F rSub { size 8{B} } =w rSub { size 8{"fl"} } } {} ,a statement of Archimedes’ principle.

The space it occupied is filled by fluid having a weight w fl size 12{w rSub { size 8{"fl"} } } {} . This weight is supported by the surrounding fluid, and so the buoyant force must equal w fl size 12{w rSub { size 8{"fl"} } } {} , the weight of the fluid displaced by the object. It is a tribute to the genius of the Greek mathematician and inventor Archimedes (ca. 287–212 B.C.) that he stated this principle long before concepts of force were well established. Stated in words, Archimedes’ principle    is as follows: The buoyant force on an object equals the weight of the fluid it displaces. In equation form, Archimedes’ principle is

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics 101. OpenStax CNX. Jan 07, 2013 Download for free at http://legacy.cnx.org/content/col11479/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics 101' conversation and receive update notifications?

Ask