<< Chapter < Page Chapter >> Page >

The fact that nuclear forces are very strong is responsible for the very large energies emitted in nuclear decay. During decay, the forces do work, and since work is force times the distance, a large force can result in a large emitted energy. In fact, we know that there are two distinct nuclear forces because of the different types of nuclear decay—the strong nuclear force is responsible for α size 12{α} {} decay, while the weak nuclear force is responsible for β size 12{β} {} decay.

The many stable and unstable nuclei we have explored, and the hundreds we have not discussed, can be arranged in a table called the chart of the nuclides    , a simplified version of which is shown in [link] . Nuclides are located on a plot of N size 12{N} {} versus Z size 12{Z} {} . Examination of a detailed chart of the nuclides reveals patterns in the characteristics of nuclei, such as stability, abundance, and types of decay, analogous to but more complex than the systematics in the periodic table of the elements.

A chart of nuclides is shown with x axis labeled as number of protons or atomic number with range zero to one hundred ten and y axis labeled as number of neutrons with range zero to one hundred sixty. A straight dashed line is shown for equal atomic number and number of nuclides. A number of points are plotted above the dashed line. The region up to atomic number eighty and neutron number one hundred thirty is shown as stable nuclei and above this region is unstable nuclei.
Simplified chart of the nuclides, a graph of N size 12{N} {} versus Z size 12{Z} {} for known nuclides. The patterns of stable and unstable nuclides reveal characteristics of the nuclear forces. The dashed line is for N = Z size 12{N=Z} {} . Numbers along diagonals are mass numbers A size 12{A} {} .

In principle, a nucleus can have any combination of protons and neutrons, but [link] shows a definite pattern for those that are stable. For low-mass nuclei, there is a strong tendency for N size 12{N} {} and Z size 12{Z} {} to be nearly equal. This means that the nuclear force is more attractive when N = Z size 12{N=Z} {} . More detailed examination reveals greater stability when N size 12{N} {} and Z size 12{Z} {} are even numbers—nuclear forces are more attractive when neutrons and protons are in pairs. For increasingly higher masses, there are progressively more neutrons than protons in stable nuclei. This is due to the ever-growing repulsion between protons. Since nuclear forces are short ranged, and the Coulomb force is long ranged, an excess of neutrons keeps the protons a little farther apart, reducing Coulomb repulsion. Decay modes of nuclides out of the region of stability consistently produce nuclides closer to the region of stability. There are more stable nuclei having certain numbers of protons and neutrons, called magic numbers    . Magic numbers indicate a shell structure for the nucleus in which closed shells are more stable. Nuclear shell theory has been very successful in explaining nuclear energy levels, nuclear decay, and the greater stability of nuclei with closed shells. We have been producing ever-heavier transuranic elements since the early 1940s, and we have now produced the element with Z = 118 size 12{Z="118"} {} . There are theoretical predictions of an island of relative stability for nuclei with such high Z size 12{Z} {} s.

Portrait of Maria Goeppert Mayer
The German-born American physicist Maria Goeppert Mayer (1906–1972) shared the 1963 Nobel Prize in physics with J. Jensen for the creation of the nuclear shell model. This successful nuclear model has nucleons filling shells analogous to electron shells in atoms. It was inspired by patterns observed in nuclear properties. (credit: Nobel Foundation via Wikimedia Commons)

Section summary

  • Two particles, both called nucleons, are found inside nuclei. The two types of nucleons are protons and neutrons; they are very similar, except that the proton is positively charged while the neutron is neutral. Some of their characteristics are given in [link] and compared with those of the electron. A mass unit convenient to atomic and nuclear processes is the unified atomic mass unit (u), defined to be
    1 u = 1.6605 × 10 27 kg = 931.46 MeV / c 2 .
  • A nuclide is a specific combination of protons and neutrons, denoted by
    Z A X N or simply A X, size 12{"" lSup { size 8{A} } X} {}
    Z size 12{Z} {} is the number of protons or atomic number, X is the symbol for the element, N size 12{N} {} is the number of neutrons, and A size 12{A} {} is the mass number or the total number of protons and neutrons,
    A = N + Z . size 12{A=N+Z} {}
  • Nuclides having the same Z size 12{Z} {} but different N size 12{N} {} are isotopes of the same element.
  • The radius of a nucleus, r size 12{r} {} , is approximately
    r = r 0 A 1 / 3 ,
    where r 0 = 1.2 fm . Nuclear volumes are proportional to A size 12{A} {} . There are two nuclear forces, the weak and the strong. Systematics in nuclear stability seen on the chart of the nuclides indicate that there are shell closures in nuclei for values of Z size 12{Z} {} and N size 12{N} {} equal to the magic numbers, which correspond to highly stable nuclei.

Conceptual questions

The weak and strong nuclear forces are basic to the structure of matter. Why we do not experience them directly?

Define and make clear distinctions between the terms neutron, nucleon, nucleus, nuclide, and neutrino.

What are isotopes? Why do different isotopes of the same element have similar chemistries?

Problems&Exercises

Verify that a 2 . 3 × 10 17 kg size 12{2 "." 3 times "10" rSup { size 8{"17"} } "kg"} {} mass of water at normal density would make a cube 60 km on a side, as claimed in [link] . (This mass at nuclear density would make a cube 1.0 m on a side.)

m = ρV = ρd 3 a = m ρ 1/3 = 2.3 × 10 17 kg 1000 kg/m 3 1 3 = 61 × 10 3 m = 61 km

Find the length of a side of a cube having a mass of 1.0 kg and the density of nuclear matter, taking this to be 2 . 3 × 10 17 kg/m 3 size 12{2 "." 3´"10" rSup { size 8{"17"} } " kg/m" rSup { size 8{3} } } {} .

What is the radius of an α size 12{α} {} particle?

1.9 fm size 12{1 "." 9" fm"} {}

Find the radius of a 238 Pu size 12{"" lSup { size 8{"238"} } "Pu"} {} nucleus. 238 Pu size 12{"" lSup { size 8{"238"} } "Pu"} {} is a manufactured nuclide that is used as a power source on some space probes.

(a) Calculate the radius of 58 Ni size 12{"" lSup { size 8{"58"} } "Ni"} {} , one of the most tightly bound stable nuclei.

(b) What is the ratio of the radius of 58 Ni size 12{"" lSup { size 8{"58"} } "Ni"} {} to that of 258 Ha size 12{"" lSup { size 8{"258"} } "Ha"} {} , one of the largest nuclei ever made? Note that the radius of the largest nucleus is still much smaller than the size of an atom.

(a) 4.6 fm size 12{4 "." "6 fm"} {}

(b) 0 . 61 to 1 size 12{0 "." "61 to 1"} {}

The unified atomic mass unit is defined to be 1 u = 1 . 6605 × 10 −27 kg size 12{1" u"=1 "." "6605"×"10" rSup { size 8{-"27"} } "kg"} {} . Verify that this amount of mass converted to energy yields 931.5 MeV. Note that you must use four-digit or better values for c size 12{c} {} and q e size 12{ lline q rSub { size 8{e} } rline } {} .

What is the ratio of the velocity of a β size 12{β} {} particle to that of an α size 12{α} {} particle, if they have the same nonrelativistic kinetic energy?

85 . 4 to 1 size 12{"85" "." "4 to 1"} {}

If a 1.50-cm-thick piece of lead can absorb 90.0% of the γ size 12{γ} {} rays from a radioactive source, how many centimeters of lead are needed to absorb all but 0.100% of the γ size 12{γ} {} rays?

The detail observable using a probe is limited by its wavelength. Calculate the energy of a γ size 12{γ} {} -ray photon that has a wavelength of 1 × 10 16 m size 12{1 times "10" rSup { size 8{ - "16"} } m} {} , small enough to detect details about one-tenth the size of a nucleon. Note that a photon having this energy is difficult to produce and interacts poorly with the nucleus, limiting the practicability of this probe.

12.4 GeV size 12{"12" "." "4 GeV"} {}

(a) Show that if you assume the average nucleus is spherical with a radius r = r 0 A 1 / 3 size 12{r=r rSub { size 8{0} } A rSup { size 8{1/3} } } {} , and with a mass of A size 12{A} {} u, then its density is independent of A size 12{A} {} .

(b) Calculate that density in u/fm 3 size 12{"u/fm" rSup { size 8{3} } } {} and kg/m 3 size 12{"kg/m" rSup { size 8{3} } } {} , and compare your results with those found in [link] for 56 Fe size 12{"" lSup { size 8{"56"} } "Fe"} {} .

What is the ratio of the velocity of a 5.00-MeV β size 12{β} {} ray to that of an α size 12{β} {} particle with the same kinetic energy? This should confirm that β size 12{β} {} s travel much faster than α size 12{β} {} s even when relativity is taken into consideration. (See also [link] .)

19.3 to 1

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Concepts of physics. OpenStax CNX. Aug 25, 2015 Download for free at https://legacy.cnx.org/content/col11738/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concepts of physics' conversation and receive update notifications?

Ask