<< Chapter < Page Chapter >> Page >

Another control structure is the ability to declare a function as "PURE." A PURE function has no side effects other than through its parameters. The programmer is guaranteeing that a PURE function can execute simultaneously on many processors with no ill effects. This allows HPF to assume that it will only operate on local data and does not need any data communication during the duration of the function execution. The programmer can also declare which parameters of the function are input parameters, output parameters, and input-output parameters.

Hpf intrinsics

The companies who marketed SIMD computers needed to come up with significant tools to allow efficient collective operations across all the processors. A perfect example of this is the SUM operation. To SUM the value of an array spread across N processors, the simplistic approach takes N steps. However, it is possible to accomplish it in log(N) steps using a technique called parallel-prefix-sum . By the time HPF was in development, a number of these operations had been identified and implemented. HPF took the opportunity to define standardized syntax for these operations.

A sample of these operations includes:

  • SUM_PREFIX Performs various types of parallel-prefix summations.
  • ALL_SCATTER Distributes a single value to a set of processors.
  • GRADE_DOWN Sorts into decreasing order.
  • IANY Computes the logical OR of a set of values.

While there are a large number of these intrinsic functions, most applications use only a few of the operations.

Hpf extrinsics

In order to allow the vendors with diverse architectures to provide their particular advantage, HPF included the capability to link "extrinsic" functions. These functions didn't need to be written in FORTRAN 90/HPF and performed a number of vendor-supported capabilities. This capability allowed users to perform such tasks as the creation of hybrid applications with some HPF and some message passing.

High performance computing programmers always like the ability to do things their own way in order to eke out that last drop of performance.

Heat flow in hpf

To port our heat flow application to HPF, there is really only a single line of code that needs to be added. In the example below, we've changed to a larger two-dimensional array:


INTEGER PLATESIZ,MAXTIME PARAMETER(PLATESIZ=2000,MAXTIME=200)!HPF$ DISTRIBUTE PLATE(*,BLOCK) REAL*4 PLATE(PLATESIZ,PLATESIZ)INTEGER TICK PLATE = 0.0* Add BoundariesPLATE(1,:) = 100.0 PLATE(PLATESIZ,:) = -40.0PLATE(:,PLATESIZ) = 35.23 PLATE(:,1) = 4.5DO TICK = 1,MAXTIMEPLATE(2:PLATESIZ-1,2:PLATESIZ-1) = ( + PLATE(1:PLATESIZ-2,2:PLATESIZ-1) ++ PLATE(3:PLATESIZ-0,2:PLATESIZ-1) + + PLATE(2:PLATESIZ-1,1:PLATESIZ-2) ++ PLATE(2:PLATESIZ-1,3:PLATESIZ-0) ) / 4.0 PRINT 1000,TICK, PLATE(2,2)1000 FORMAT('TICK = ',I5, F13.8) ENDDO* END

You will notice that the HPF directive distributes the array columns using the BLOCK approach, keeping all the elements within a column on a single processor. At first glance, it might appear that ( BLOCK , BLOCK ) is the better distribution. However, there are two advantages to a ( * , BLOCK ) distribution. First, striding down a column is a unit-stride operation and so you might just as well process an entire column. The more significant aspect of the distribution is that a ( BLOCK , BLOCK ) distribution forces each processor to communicate with up to eight other processors to get its neighboring values. Using the (*, BLOCK ) distribution, each processor will have to exchange data with at most two processors each time step.

When we look at PVM, we will look at this same program implemented in a SPMD-style message-passing fashion. In that example, you will see some of the details that HPF must handle to properly execute this code. After reviewing that code, you will probably choose to implement all of your future heat flow applications in HPF!

Hpf summary

In some ways, HPF has been good for FORTRAN 90. Companies such as IBM with its SP-1 needed to provide some high-level language for those users who didn't want to write message-passing codes. Because of this, IBM has invested a great deal of effort in implementing and optimizing HPF. Interestingly, much of this effort will directly benefit the ability to develop more sophisticated FORTRAN 90 compilers. The extensive data flow analysis required to minimize communications and manage the dynamic data structures will carry over into FORTRAN 90 compilers even without using the HPF directives.

Time will tell if the HPF data distribution directives will no longer be needed and compilers will be capable of performing sufficient analysis of straight FORTRAN 90 code to optimize data placement and movement.

In its current form, HPF is an excellent vehicle for expressing the highly data-parallel, grid-based applications. Its weaknesses are irregular communications and dynamic load balancing. A new effort to develop the next version of HPF is under- way to address some of these issues. Unfortunately, it is more difficult to solve these runtime problems while maintaining good performance across a wide range of architectures.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, High performance computing. OpenStax CNX. Aug 25, 2010 Download for free at http://cnx.org/content/col11136/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'High performance computing' conversation and receive update notifications?

Ask