<< Chapter < Page Chapter >> Page >

In general, the HPF compiler is not magic - it simply does a very good job with the communication details when the programmer can design a good data decomposition. At the same time, it retains portability with the single CPU and shared uniform memory systems using FORTRAN 90.

Hpf data layout directives

Perhaps the most important contributions of HPF are its data layout directives. Using these directives, the programmer can control how data is laid out based on the programmer's knowledge of the data interactions. An example directive is as follows:


REAL*4 ROD(10) !HPF$ DISTRIBUTE ROD(BLOCK)

The !HPF$ prefix would be a comment to a non-HPF compiler and can safely be ignored by a straight FORTRAN 90 compiler. The DISTRIBUTE directive indicates that the ROD array is to be distributed across multiple processors. If this directive is not used, the ROD array is allocated on one processor and communicated to the other processors as necessary. There are several distributions that can be done in each dimension:


REAL*4 BOB(100,100,100),RICH(100,100,100) !HPF$ DISTRIBUTE BOB(BLOCK,CYCLIC,*)!HPF$ DISTRIBUTE RICH(CYCLIC(10))

These distributions operate as follows:

  • BLOCK The array is distributed across the processors using contiguous blocks of the index value. The blocks are made as large as possible.
  • CYCLIC The array is distributed across the processors, mapping each successive element to the "next" processor, and when the last processor is reached, allocation starts again on the first processor.
  • CYCLIC(n) The array is distributed the same as CYCLIC except that n successive elements are placed on each processor before moving on to the next processor.
All the elements in that dimension are placed on the same processor. This is most useful for multidimensional arrays.

Distributing array elements to processors

This figure shows three grids of numbered boxes, with three lines of code above each grid.

[link] shows how the elements of a simple array would be mapped onto three processors with different directives.

It must allocate four elements to Processors 1 and 2 because there is no Processor 4 available for the leftover element if it allocated three elements to Processors 1 and 2. In [link] , the elements are allocated on successive processors, wrapping around to Processor 1 after the last processor. In [link] , using a chunk size with CYCLIC is a compromise between pure BLOCK and pure CYCLIC .

To explore the use of the * , we can look at a simple two-dimensional array mapped onto four processors. In [link] , we show the array layout and each cell indicates which processor will hold the data for that cell in the two-dimensional array. In [link] , the directive decomposes in both dimensions simultaneously. This approach results in roughly square patches in the array. However, this may not be the best approach. In the following example, we use the * to indicate that we want all the elements of a particular column to be allocated on the same processor. So, the column values equally distribute the columns across the processors. Then, all the rows in each column follow where the column has been placed. This allows unit stride for the on-processor portions of the computation and is beneficial in some applications. The * syntax is also called on-processor distribution.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, High performance computing. OpenStax CNX. Aug 25, 2010 Download for free at http://cnx.org/content/col11136/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'High performance computing' conversation and receive update notifications?

Ask