<< Chapter < Page Chapter >> Page >

For instance, a student’s research into deforestation of the Amazon under a sustainability studies paradigm would require investigation in a variety of fields not normally brought together under the traditional disciplinary regime. These fields might include plant biology, hydrology, and climatology, alongside economics, sociology, and the history and literature of post-colonial Brazil. Systems literacy, in a nutshell, combines the study of social history and cultural discourses with a technical understanding of ecosystem processes. Only this combination offers a comprehensive view of real-world environmental challenges as they are unfolding in the twenty-first century.

From the viewpoint of systems literacy sustainability studies works on two planes at once. Students of sustainability both acknowledge the absolute interdependence of human and natural systems—indeed that human beings and all their works are nothing if not natural—while at the same time recognizing that to solve our environmental problems we must often speak of the natural world and human societies as if they were separate entities governed by different rules. For instance, it is very useful to examine aspects of our human system as diachronic —as progressively evolving over historical time—while viewing natural systems more according to synchronic patterns of repetition and equilibrium. The diachronic features of human social evolution since 1500 would include the history of trade and finance, colonization and frontier development, and technology and urbanization, while examples of nature’s synchronicity would be exemplified in the migratory patterns of birds, plant and animal reproduction, or the microbial ecology of a lake or river. A diachronic view looks at the changes in a system over time, while the synchronic view examines the interrelated parts of the system at any given moment, assuming a stable state.

While the distinction between diachronic and synchronic systems is in some sense artificial, it does highlight the structural inevitability of dysfunction when the two interlocked systems operate on different timelines and principles. The early twentieth century appetite for rubber to service the emerging automobile industry, for instance, marks an important chapter in the “heroic” history of human technology, while signifying a very different transition in the history of forest ecosystems in Asia and Latin America. Human history since the agricultural transition 10,000 years ago, and on a much more dramatic scale in the last two hundred years, is full of such examples of new human technologies creating sudden, overwhelming demand for a natural resource previously ignored, and reshaping entire ecosystems over large areas in order to extract, transport and industrialize the newly commodified material.

Biocomplexity

For students in the humanities and social sciences, sustainability studies requires adoption of a new conceptual vocabulary drawn from the ecological sciences. Among the most important of these concepts is complexity . Biocomplexity —the chaotically variable interaction of organic elements on multiple scales—is the defining characteristic of all ecosystems, inclusive of humans. Biocomplexity science seeks to understand this nonlinear functioning of elements across multiple scales of time and space, from the molecular to the intercontinental, from the microsecond to millennia and deep time. Such an approach hasn’t been possible until very recently. For example, only since the development of (affordable) genomic sequencing in the last decade have biologists begun to investigate how environments regulate gene functions, and how changes in biophysical conditions place pressure on species selection and drive evolution.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 9

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Sustainability: a comprehensive foundation. OpenStax CNX. Nov 11, 2013 Download for free at http://legacy.cnx.org/content/col11325/1.43
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Sustainability: a comprehensive foundation' conversation and receive update notifications?

Ask