<< Chapter < Page Chapter >> Page >

The previous American National Standards Institute (ANSI) FORTRAN standard release, FORTRAN 77 (X3.9-1978), was written to promote portability of FORTRAN programs between different platforms. It didn't invent new language components, but instead incorporated good features that were already available in production compilers. Unlike FORTRAN 77, FORTRAN 90 (ANSI X3.198-1992) brings new extensions and features to the language. Some of these just bring FORTRAN up to date with newer languages like C (dynamic memory allocation, scoping rules) and C++ (generic function interfaces). But some of the new features are unique to FORTRAN (array operations). Interestingly, while the FORTRAN 90 specification was being developed, the dominant high performance computer architectures were scalable SIMD systems such as the Connection Machine and shared-memory vector-parallel processor systems from companies like Cray Research.

FORTRAN 90 does a surprisingly good job of meeting the needs of these very different architectures. Its features also map reasonably well onto the new shared uniform memory multiprocessors. However, as we will see later, FORTRAN 90 alone is not yet sufficient to meet the needs of the scalable distributed and nonuniform access memory systems that are becoming dominant at the high end of computing.

The FORTRAN 90 extensions to FORTRAN 77 include:

  • Array constructs
  • Dynamic memory allocation and automatic variables
  • Pointers
  • New data types, structures
  • New intrinsic functions, including many that operate on vectors or matrices
  • New control structures, such as a WHERE statement
  • Enhanced procedure interfaces

Fortran 90 array constructs

With FORTRAN 90 array constructs, you can specify whole arrays or array sections as the participants in unary and binary operations. These constructs are a key feature for "unserializing" applications so that they are better suited to vector computers and parallel processors. For example, say you wish to add two vectors, A and B. In FORTRAN 90, you can express this as a simple addition operation, rather than a traditional loop. That is, you can write:


A = A + B

instead of the traditional FORTRAN 77 loop:


DO I=1,N A(I) = A(I) + B(I)ENDDO

The code generated by the compiler on your workstation may not look any different, but for some of the parallel machines available now and workstations just around the corner, the difference are significant. The FORTRAN 90 version states explicitly that the computations can be performed in any order, including all in parallel at the same time.

One important effect of this is that if the FORTRAN 90 version experienced a floating-point fault adding element 17, and you were to look at the memory in a debugger, it would be perfectly legal for element 27 to be already computed.

You are not limited to one-dimensional arrays. For instance, the element-wise addition of two two-dimensional arrays could be stated like this: Just in case you are wondering, A*B gives you an element-wise multiplication of array members­­— not matrix multiplication. That is covered by a FORTRAN 90 intrinsic function.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, High performance computing. OpenStax CNX. Aug 25, 2010 Download for free at http://cnx.org/content/col11136/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'High performance computing' conversation and receive update notifications?

Ask