<< Chapter < Page Chapter >> Page >
If F is a probability distribution function, the associated quantile function Q is essentially an inverse of F. The quantile function is defined on the unit interval (0,1). For F continuous and strictly increasing at t, then Q(u)=t iff F(t)=u. Thus, if u is a probability value, t=Q(u) is the value of t for which P(X≤t)=u. As an application, one may generate independent classes with prescribed distributions. Matlab procedures are developed for a variety of problems involving quantile functions.

The quantile function

The quantile function for a probability distribution has many uses in both the theory and application of probability. If F is a probability distribution function, the quantile function may be used to “construct” a random variable having F as its distributions function. This fact serves as the basis of a method of simulating the“sampling” from an arbitrary distribution with the aid of a random number generator . Also, given any finite class

{ X i : 1 i n } of random variables, an independent class { Y i : 1 i n } may be constructed, with each X i and associated Y i having the same (marginal) distribution. Quantile functions for simple random variables maybe used to obtain an important Poisson approximation theorem (which we do not develop in this work). The quantile function is usedto derive a number of useful special forms for mathematical expectation.

General concept—properties, and examples

If F is a probability distribution function, the associated quantile function Q is essentially an inverse of F . The quantile function is defined on the unit interval ( 0 , 1 ) . For F continuous and strictly increasing at t , then Q ( u ) = t iff F ( t ) = u . Thus, if u is a probability value, t = Q ( u ) is the value of t for which P ( X t ) = u .

The weibull distribution ( 3 , 2 , 0 )

u = F ( t ) = 1 - e - 3 t 2 t 0 t = Q ( u ) = - ln ( 1 - u ) / 3
Got questions? Get instant answers now!

The normal distribution

The m-function norminv , based on the MATLAB function erfinv (inverse error function), calculates values of Q for the normal distribution.

Got questions? Get instant answers now!

The restriction to the continuous case is not essential. We consider a general definition which applies to any probability distribution function.

Definition : If F is a function having the properties of a probability distribution function, then the quantile function for F is given by

Q ( u ) = inf { t : F ( t ) u } u ( 0 , 1 )

We note

  • If F ( t * ) u * , then t * inf { t : F ( t ) u * } = Q ( u * )
  • If F ( t * ) < u * , then t * < inf { t : F ( t ) u * } = Q ( u * )

Hence, we have the important property:

(Q1) Q ( u ) t iff u F ( t ) u ( 0 , 1 ) .

The property (Q1) implies the following important property:

(Q2) If U uniform ( 0 , 1 ) , then X = Q ( U ) has distribution function F X = F . To see this, note that F X ( t ) = P [ Q ( U ) t ] = P [ U F ( t ) ] = F ( t ) .

Property (Q2) implies that if F is any distribution function, with quantile function Q , then the random variable X = Q ( U ) , with U uniformly distributed on ( 0 , 1 ) , has distribution function F .

Independent classes with prescribed distributions

Suppose { X i : 1 i n } is an arbitrary class of random variables with corresponding distribution functions { F i : 1 i n } . Let { Q i : 1 i n } be the respective quantile functions. There is always an independent class { U i : 1 i n } iid uniform ( 0 , 1 ) (marginals for the joint uniform distribution on the unit hypercube with sides ( 0 , 1 ) ). Then the random variables Y i = Q i ( U i ) , 1 i n , form an independent class with the same marginals as the X i .

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Applied probability. OpenStax CNX. Aug 31, 2009 Download for free at http://cnx.org/content/col10708/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Applied probability' conversation and receive update notifications?

Ask