<< Chapter < Page Chapter >> Page >

With their large fronds, ferns are the most readily recognizable seedless vascular plants ( [link] ). About 12,000 species of ferns live in environments ranging from tropics to temperate forests. Although some species survive in dry environments, most ferns are restricted to moist and shaded places. They made their appearance in the fossil record during the Devonian period (416–359 million years ago) and expanded during the Carboniferous period, 359–299 million years ago ( [link] ).

 Photo shows a potted fern.
Some specimens of this short tree-fern species can grow very tall. (credit: Adrian Pingstone)
 This chart shows a geological time scale, starting with the Pre-Archean eon about 3800 million years ago, and ending with the Quaternary period in the Cenozoic era in the Phanerozoic eon about 1.6 million years ago. The Devonian period and Carboniferous period are both in the Paleozoic era. The Devonian period began 410 million years ago and ended 360 million years ago. The Carboniferous period was from 360 million years ago to 290 million years ago.
This chart shows the geological time scale, beginning with the Pre-Archean eon 3800 million years ago and ending with the Quaternary period in present time. (credit: modification of work by USGS)

Concept in action

Go to this website to see an animation of the lifecycle of a fern and to test your knowledge.

Careers in action

Landscape designer

Looking at the well-laid gardens of flowers and fountains seen in royal castles and historic houses of Europe, it is clear that the creators of those gardens knew more than art and design. They were also familiar with the biology of the plants they chose. Landscape design also has strong roots in the United States’ tradition. A prime example of early American classical design is Monticello, Thomas Jefferson’s private estate; among his many other interests, Jefferson maintained a passion for botany. Landscape layout can encompass a small private space, like a backyard garden; public gathering places, like Central Park in New York City; or an entire city plan, like Pierre L’Enfant’s design for Washington, DC.

A landscape designer will plan traditional public spaces—such as botanical gardens, parks, college campuses, gardens, and larger developments—as well as natural areas and private gardens ( [link] ). The restoration of natural places encroached upon by human intervention, such as wetlands, also requires the expertise of a landscape designer.

With such an array of required skills, a landscape designer’s education includes a solid background in botany, soil science, plant pathology, entomology, and horticulture. Coursework in architecture and design software is also required for the completion of the degree. The successful design of a landscape rests on an extensive knowledge of plant growth requirements, such as light and shade, moisture levels, compatibility of different species, and susceptibility to pathogens and pests. For example, mosses and ferns will thrive in a shaded area where fountains provide moisture; cacti, on the other hand, would not fare well in that environment. The future growth of the individual plants must be taken into account to avoid crowding and competition for light and nutrients. The appearance of the space over time is also of concern. Shapes, colors, and biology must be balanced for a well-maintained and sustainable green space. Art, architecture, and biology blend in a beautifully designed and implemented landscape.

 Photo shows a landscaped garden with a variety of flowers and bushes.
This campus garden was designed by students in the horticulture and landscaping department of the college. (credit: Myriam Feldman)

Section summary

Seedless nonvascular plants are small. The dominant stage of the life cycle is the gametophyte. Without a vascular system and roots, they absorb water and nutrients through all of their exposed surfaces. There are three main groups: the liverworts, the hornworts, and the mosses. They are collectively known as bryophytes.

Vascular systems consist of xylem tissue, which transports water and minerals, and phloem tissue, which transports sugars and proteins. With the vascular system, there appeared leaves—large photosynthetic organs—and roots to absorb water from the ground. The seedless vascular plants include club mosses, which are the most primitive; whisk ferns, which lost leaves and roots by reductive evolution; horsetails, and ferns.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Natural history supplemental. OpenStax CNX. Aug 19, 2014 Download for free at http://legacy.cnx.org/content/col11695/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Natural history supplemental' conversation and receive update notifications?

Ask