<< Chapter < Page Chapter >> Page >
The schematic shows a ray labeled unpolarized sunlight coming horizontally from the left along what we shall call the x axis. On this ray is a symmetric star burst pattern of double headed arrows, with all the arrows in the plane perpendicular to the ray, This ray strikes a dot labeled molecule. From the molecule three rays emerge. One ray goes straight down, in the negative y direction. It is labeled polarized light and has a single double headed arrow on it that is perpendicular to the plane of the page, that is, the double headed arrow is parallel to the z axis. A second ray continues from the molecule in the same direction as the incoming ray and is labeled unpolarized light. This ray also has a symmetric star burst pattern of double headed arrows on it. A final ray comes out of the plane of the paper in the x z plane, at about 45 degrees from the x axis. This ray is labeled partially polarized light and has a nonsymmetric star burst pattern of double headed arrows on it.
Polarization by scattering. Unpolarized light scattering from air molecules shakes their electrons perpendicular to the direction of the original ray. The scattered light therefore has a polarization perpendicular to the original direction and none parallel to the original direction.

Photographs of the sky can be darkened by polarizing filters, a trick used by many photographers to make clouds brighter by contrast. Scattering from other particles, such as smoke or dust, can also polarize light. Detecting polarization in scattered EM waves can be a useful analytical tool in determining the scattering source.

There is a range of optical effects used in sunglasses. Besides being Polaroid, other sunglasses have colored pigments embedded in them, while others use non-reflective or even reflective coatings. A recent development is photochromic lenses, which darken in the sunlight and become clear indoors. Photochromic lenses are embedded with organic microcrystalline molecules that change their properties when exposed to UV in sunlight, but become clear in artificial lighting with no UV.

Take-home experiment: polarization

Find Polaroid sunglasses and rotate one while holding the other still and look at different surfaces and objects. Explain your observations. What is the difference in angle from when you see a maximum intensity to when you see a minimum intensity? Find a reflective glass surface and do the same. At what angle does the glass need to be oriented to give minimum glare?

Liquid crystals and other polarization effects in materials

While you are undoubtedly aware of liquid crystal displays (LCDs) found in watches, calculators, computer screens, cellphones, flat screen televisions, and other myriad places, you may not be aware that they are based on polarization. Liquid crystals are so named because their molecules can be aligned even though they are in a liquid. Liquid crystals have the property that they can rotate the polarization of light passing through them by 90º size 12{"90"°} {} . Furthermore, this property can be turned off by the application of a voltage, as illustrated in [link] . It is possible to manipulate this characteristic quickly and in small well-defined regions to create the contrast patterns we see in so many LCD devices.

In flat screen LCD televisions, there is a large light at the back of the TV. The light travels to the front screen through millions of tiny units called pixels (picture elements). One of these is shown in [link] (a) and (b). Each unit has three cells, with red, blue, or green filters, each controlled independently. When the voltage across a liquid crystal is switched off, the liquid crystal passes the light through the particular filter. One can vary the picture contrast by varying the strength of the voltage applied to the liquid crystal.

The figure contains two schematics and one photograph. The first schematic shows a ray of initially unpolarized light going through a vertical polarizer, then an element labeled L C D no voltage ninety degree rotation, then finally a horizontal polarizer. The initially unpolarized light becomes vertically polarized after the vertical polarizer, then is rotated ninety degrees by the L C D element so that it is horizontally polarized, then it passes through the horizontal polarizer. The second schematic is the same except that the L C D element is labeled voltage on, no rotation. The light coming out of the L C D element is thus vertically polarized and does not pass through the horizontal polarizer. Finally, a photograph is shown of a laptop computer that is open so that you can see its screen, which is on and has some icons and windows visible.
(a) Polarized light is rotated 90º size 12{"90"°} {} by a liquid crystal and then passed by a polarizing filter that has its axis perpendicular to the original polarization direction. (b) When a voltage is applied to the liquid crystal, the polarized light is not rotated and is blocked by the filter, making the region dark in comparison with its surroundings. (c) LCDs can be made color specific, small, and fast enough to use in laptop computers and TVs. (credit: Jon Sullivan)
Practice Key Terms 9

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Concepts of physics with linear momentum. OpenStax CNX. Aug 11, 2016 Download for free at http://legacy.cnx.org/content/col11960/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concepts of physics with linear momentum' conversation and receive update notifications?

Ask