<< Chapter < Page Chapter >> Page >

Definition of the trigonometric functions

We are familiar with a function of the form f ( x ) where f is the function and x is the argument. Examples are:

f ( x ) = 2 x (exponential function) g ( x ) = x + 2 (linear function) h ( x ) = 2 x 2 (parabolic function)

The basis of trigonometry are the trigonometric functions . There are three basic trigonometric functions:

  1. sine
  2. cosine
  3. tangent

These are abbreviated to:

  1. sin
  2. cos
  3. tan

These functions can be defined from a right-angled triangle , a triangle where one internal angle is 90 .

Consider a right-angled triangle.

In the right-angled triangle, we refer to the lengths of the three sides according to how they are placed in relation to the angle θ . The side opposite to the right angle is labeled the hypotenuse , the side opposite θ is labeled opposite , the side next to θ is labeled adjacent . Note that the choice of non-90 degree internal angle is arbitrary. You can choose either internal angle and then define the adjacent and opposite sides accordingly. However, the hypotenuse remains the same regardless of which internal angle you are referring to (because it is ALWAYS opposite the right angle and ALWAYS the longest side).

We define the trigonometric functions, also known as trigonometric identities, as:

sin θ = opposite hypotenuse cos θ = adjacent hypotenuse tan θ = opposite adjacent

These functions relate the lengths of the sides of a right-angled triangle to its interior angles.

The trig ratios are independent of the lengths of the sides of a triangle and depend only on the angles, this is why we can consider them to be functions of the angles.

One way of remembering the definitions is to use the following mnemonic that is perhaps easier to remember:

S illy O ld H ens S in = O pposite H ypotenuse
C ackle A nd H owl C os = A djacent H ypotenuse
T ill O ld A ge T an = O pposite A djacent

You may also hear people saying Soh Cah Toa. This is just another way to remember the trig functions.

The definitions of opposite, adjacent and hypotenuse are only applicable when you are working with right-angled triangles! Always check to make sure your triangle has a right-angle before you use them, otherwise you will get the wrong answer. We will find ways of using our knowledge of right-angled triangles to deal with the trigonometry of non right-angled triangles in Grade 11.

Investigation : definitions of trigonometric functions

  1. In each of the following triangles, state whether a , b and c are the hypotenuse, opposite or adjacent sides of the triangle with respect to the marked angle.
  2. Complete each of the following, the first has been done for you
    a ) sin A ^ = opposite hypotenuse = C B A C b ) cos A ^ = c ) tan A ^ =
    d ) sin C ^ = e ) cos C ^ = f ) tan C ^ =
  3. Complete each of the following without a calculator:
    sin 60 = cos 30 = tan 60 =
    sin 45 = cos 45 = tan 45 =

For most angles θ , it is very difficult to calculate the values of sin θ , cos θ and tan θ . One usually needs to use a calculator to do so. However, we saw in the above Activity that we could work these values out for some special angles. Some of these angles are listed in the table below, along with the values of the trigonometric functions at these angles. Remember that the lengths of the sides of a right angled triangle must obey Pythagoras' theorem. The square of the hypotenuse (side opposite the 90 degree angle) equals the sum of the squares of the two other sides.

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Siyavula textbooks: grade 10 maths [caps]. OpenStax CNX. Aug 03, 2011 Download for free at http://cnx.org/content/col11306/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: grade 10 maths [caps]' conversation and receive update notifications?

Ask