<< Chapter < Page Chapter >> Page >
This report summarizes work done as part of the Physics of Strings PFUG under Rice University's VIGRE program. VIGRE is a program of Vertically Integrated Grants for Research and Education in the Mathematical Sciences under the direction of the National Science Foundation. A PFUG is a group of Postdocs, Faculty, Undergraduates and Graduate students formed round the study of a common problem. This module describes the three-spectral inverse problem for a beaded string and presents experimental results of its application.

Introduction

How well can we predict a string's mass distribution by simply listening to its vibration? While considering this question, previous experiments have been limited in the types of strings that could be studied. When only considering two spectra (fixed-fixed and fixed-flat), acquiring the necessary data required us to force the beaded strings to be symmetric about the midpoint. This condition has severely limited the possible experiments. However, recent theoretical developments by Boyko and Pivovarchik have expanded the regime of experimental work with beaded strings. Here we consider three fixed-fixed spectra (whole string, clamped left section, and clamped right section), and show that the information contained in these three spectra may be written as two sets of two spectra problems. Thus, for an arbitrary beaded string, it is possible to measure the frequencies of vibration of three sections of the string. It is then possible to convert these spectra into two separate inverse problems with well known solutions. An algorithm for the recovery of the length and mass information of the string is given by Cox, et. al. . Here is presented the theoretical framework and an experimental setup to predict the masses and lengths of any arbitrary beaded string as long as the string meets our much shorter list of requirements.

The three-spectral forward problem

We begin by considering a beaded string with at least two beads. The string is artificially separated at an interior point into a left part and a right part, with each part containing at least one mass. The two parts join to form a continuous string. This string vibrates with particular characteristic frequencies depending on the tension in the string, the masses of the beads, and the lengths between them. The forward problem is concerned with finding the spectra given a beaded string's properties.

Depiction of a beaded string with variable names

The tension is given by σ . The quantities k and m k represent the lengths between the beads and the masses of the beads for the left part of the string. The quantities k ˜ and m ˜ k represent those respective properties for the right part. There are n 1 masses on the left and n 2 masses on the right. These properties describe a uniquely determined beaded string. Let v k and v ˜ k represent the displacements of the masses in the vertical direction. The equations of motion for this system are governed by the following system of ODE's:

σ k ( v k ( t ) - v k + 1 ( t ) ) + σ k - 1 ( v k ( t ) - v k - 1 ( t ) ) + m k v k ' ' = 0 , k = 1 , 2 , , n 1

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, The art of the pfug. OpenStax CNX. Jun 05, 2013 Download for free at http://cnx.org/content/col10523/1.34
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'The art of the pfug' conversation and receive update notifications?

Ask