<< Chapter < Page Chapter >> Page >
  • Describe uniform circular motion.
  • Explain non-uniform circular motion.
  • Calculate angular acceleration of an object.
  • Observe the link between linear and angular acceleration.

Uniform Circular Motion and Gravitation discussed only uniform circular motion, which is motion in a circle at constant speed and, hence, constant angular velocity. Recall that angular velocity ω size 12{ω} {} was defined as the time rate of change of angle θ size 12{θ} {} :

ω = Δ θ Δ t , size 12{ω= { {Δθ} over {Δt} } ","} {}

where θ size 12{θ} {} is the angle of rotation as seen in [link] . The relationship between angular velocity ω size 12{ω} {} and linear velocity v size 12{v} {} was also defined in Rotation Angle and Angular Velocity as

v = size 12{v=rω} {}

or

ω = v r , size 12{ω= { {v} over {r} } } {}

where r size 12{r} {} is the radius of curvature, also seen in [link] . According to the sign convention, the counter clockwise direction is considered as positive direction and clockwise direction as negative

The given figure shows counterclockwise circular motion with a horizontal line, depicting radius r, drawn from the center of the circle to the right side on its circumference and another line is drawn in such a manner that it makes an acute angle delta theta with the horizontal line. Tangential velocity vectors are indicated at the end of the two lines. At the bottom right side of the figure, the formula for angular velocity is given as v upon r.
This figure shows uniform circular motion and some of its defined quantities.

Angular velocity is not constant when a skater pulls in her arms, when a child starts up a merry-go-round from rest, or when a computer’s hard disk slows to a halt when switched off. In all these cases, there is an angular acceleration    , in which ω size 12{ω} {} changes. The faster the change occurs, the greater the angular acceleration. Angular acceleration α size 12{α} {} is defined as the rate of change of angular velocity. In equation form, angular acceleration is expressed as follows:

α = Δ ω Δ t , size 12{α= { {Δω} over {Δt} } ","} {}

where Δ ω size 12{Δω} {} is the change in angular velocity    and Δ t size 12{Δt} {} is the change in time. The units of angular acceleration are rad/s /s size 12{ left ("rad/s" right )"/s"} {} , or rad/s 2 size 12{"rad/s" rSup { size 8{2} } } {} . If ω size 12{ω} {} increases, then α size 12{α} {} is positive. If ω size 12{ω} {} decreases, then α size 12{α} {} is negative.

Calculating the angular acceleration and deceleration of a bike wheel

Suppose a teenager puts her bicycle on its back and starts the rear wheel spinning from rest to a final angular velocity of 250 rpm in 5.00 s. (a) Calculate the angular acceleration in rad/s 2 size 12{"rad/s" rSup { size 8{2} } } {} . (b) If she now slams on the brakes, causing an angular acceleration of 87.3 rad/s 2 size 12{"-87" "." 3`"rad/s" rSup { size 8{2} } } {} , how long does it take the wheel to stop?

Strategy for (a)

The angular acceleration can be found directly from its definition in α = Δ ω Δ t size 12{α= { {Δω} over {Δt} } } {} because the final angular velocity and time are given. We see that Δ ω size 12{Δω} {} is 250 rpm and Δ t size 12{Δt} {} is 5.00 s.

Solution for (a)

Entering known information into the definition of angular acceleration, we get

α = Δ ω Δ t = 250 rpm 5.00 s . alignl { stack { size 12{α= { {Δω} over {Δt} } } {} #size 12{ {}= { {"250"" rpm"} over {5 "." "00 s"} } "."} {} } } {}

Because Δ ω size 12{Δω} {} is in revolutions per minute (rpm) and we want the standard units of rad/s 2 size 12{"rad/s" rSup { size 8{2} } } {} for angular acceleration, we need to convert Δ ω size 12{Δω} {} from rpm to rad/s:

Δ ω = 250 rev min 2π rad rev 1 min 60 sec = 26.2 rad s . alignl { stack { size 12{Δω="250" { {"rev"} over {"min"} } cdot { {2π" rad"} over {"60" "." "0 s"} } } {} #size 12{ {}="26" "." 2 { {"rad"} over {"s"} } } {} } } {}

Entering this quantity into the expression for α size 12{α} {} , we get

α = Δ ω Δ t = 26.2 rad/s 5.00 s = 5.24  rad/s 2 . alignl { stack { size 12{α= { {Δω} over {Δt} } } {} #size 12{ {}= { {"26" "." 2" rad/s"} over {5 "." "00"" s"} } "." } {} # size 12{ {}=5 "." "24"" rad/s" rSup { size 8{2} } } {}} } {}

Strategy for (b)

In this part, we know the angular acceleration and the initial angular velocity. We can find the stoppage time by using the definition of angular acceleration and solving for Δ t size 12{Δt} {} , yielding

Δ t = Δ ω α . size 12{Δt= { {Δω} over {α} } "."} {}

Solution for (b)

Here the angular velocity decreases from 26.2 rad/s size 12{"26" "." 2`"rad/s"} {} (250 rpm) to zero, so that Δ ω size 12{Δω} {} is 26.2 rad/s , and α size 12{α} {} is given to be 87.3 rad/s 2 size 12{"-87" "." 3`"rad/s" rSup { size 8{2} } } {} . Thus,

Δ t = 26.2 rad/s 87.3 rad/s 2 = 0.300 s. alignl { stack { size 12{Δt= { { - "26" "." 2`"rad/s"} over { - "87" "." 3`"rad/s" rSup { size 8{2} } } } } {} #=0 "." "300"`"s" "." {} } } {}

Discussion

Note that the angular acceleration as the girl spins the wheel is small and positive; it takes 5 s to produce an appreciable angular velocity. When she hits the brake, the angular acceleration is large and negative. The angular velocity quickly goes to zero. In both cases, the relationships are analogous to what happens with linear motion. For example, there is a large deceleration when you crash into a brick wall—the velocity change is large in a short time interval.

Got questions? Get instant answers now!

Questions & Answers

material that allows electric current to pass through
Deng Reply
material which don't allow electric current is called
Deng
insulators
Covenant
how to study physic and understand
Ewa Reply
what is conservative force with examples
Moses
what is work
Fredrick Reply
the transfer of energy by a force that causes an object to be displaced; the product of the component of the force in the direction of the displacement and the magnitude of the displacement
AI-Robot
why is it from light to gravity
Esther Reply
difference between model and theory
Esther
Is the ship moving at a constant velocity?
Kamogelo Reply
The full note of modern physics
aluet Reply
introduction to applications of nuclear physics
aluet Reply
the explanation is not in full details
Moses Reply
I need more explanation or all about kinematics
Moses
yes
zephaniah
I need more explanation or all about nuclear physics
aluet
Show that the equal masses particles emarge from collision at right angle by making explicit used of fact that momentum is a vector quantity
Muhammad Reply
yh
Isaac
A wave is described by the function D(x,t)=(1.6cm) sin[(1.2cm^-1(x+6.8cm/st] what are:a.Amplitude b. wavelength c. wave number d. frequency e. period f. velocity of speed.
Majok Reply
what is frontier of physics
Somto Reply
A body is projected upward at an angle 45° 18minutes with the horizontal with an initial speed of 40km per second. In hoe many seconds will the body reach the ground then how far from the point of projection will it strike. At what angle will the horizontal will strike
Gufraan Reply
Suppose hydrogen and oxygen are diffusing through air. A small amount of each is released simultaneously. How much time passes before the hydrogen is 1.00 s ahead of the oxygen? Such differences in arrival times are used as an analytical tool in gas chromatography.
Ezekiel Reply
please explain
Samuel
what's the definition of physics
Mobolaji Reply
what is physics
Nangun Reply
the science concerned with describing the interactions of energy, matter, space, and time; it is especially interested in what fundamental mechanisms underlie every phenomenon
AI-Robot
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask