<< Chapter < Page
  Physics for k-12   Page 1 / 1
Chapter >> Page >
Solving problems is an essential part of the understanding process.

Questions and their answers are presented here in the module text format as if it were an extension of the treatment of the topic. The idea is to provide a verbose explanation, detailing the application of theory. Solution presented is, therefore, treated as the part of the understanding process – not merely a Q/A session. The emphasis is to enforce ideas and concepts, which can not be completely absorbed unless they are put to real time situation.

Representative problems and their solutions

We discuss problems, which highlight certain aspects of the scalar vector product. For this reason, questions are categorized in terms of the characterizing features of the subject matter :

  • Angle between two vectors
  • Condition of perpendicular vectors
  • Component as scalar product
  • Nature of scalar product
  • Scalar product of a vector with itself
  • Evaluation of dot product

Angle between two vectors

Problem : Find the angle between vectors 2 i + j k and i k .

Solution : The cosine of the angle between two vectors is given in terms of dot product as :

cos θ = a . b ab

Now,

a . b = ( 2 i + j - k ) . ( 2 i - k )

Ignoring dot products of different unit vectors (they evaluate to zero), we have :

a . b = 2 i . i + ( - k ) . ( - k ) = 2 + 1 = 3 a = ( 2 2 + 1 2 + 1 2 ) = 6 b = ( 1 2 + 1 2 ) = 2 ab = 6 x 2 = ( 12 ) = 2 3

Putting in the expression of cosine, we have :

cos θ = a . b ab = 3 2 3 = 3 2 = cos 30 ° θ = 30 °

Got questions? Get instant answers now!

Condition of perpendicular vectors

Problem : Sum and difference of two vectors a and b are perpendicular to each other. Find the relation between two vectors.

Solution : The sum a + b and difference a - b are perpendicular to each other. Hence, their dot product should evaluate to zero.

Sum and difference of two vectors

Sum and difference of two vectors are perpendicular to each other.

( a + b ) . ( a - b ) = 0

Using distributive property,

a . a - a . b + b . a - b . b = 0

Using commutative property, a.b = b.a , Hence,

a . a - b . b = 0 a 2 - b 2 = 0 a = b

It means that magnitudes of two vectors are equal. See figure below for enclosed angle between vectors, when vectors are equal :

Sum and difference of two vectors

Sum and difference of two vectors are perpendicular to each other, when vectors are equal.

Got questions? Get instant answers now!

Component as scalar product

Problem : Find the components of vector 2 i + 3 j along the direction i + j .

Solution : The component of a vector “ a ” in a direction, represented by unit vector “ n ” is given by dot product :

a n = a . n

Thus, it is clear that we need to find the unit vector in the direction of i + j . Now, the unit vector in the direction of the vector is :

n = i + j | i + j |

Here,

| i + j | = ( 1 2 + 1 2 ) = 2

Hence,

n = 1 2 x ( i + j )

The component of vector 2 i + 3 j in the direction of “ n ” is :

a n = a . n = ( 2 i + 3 j ) . 1 2 x ( i + j )

a n = 1 2 x ( 2 i + 3 j ) . ( i + j ) a n = 1 2 x ( 2 x 1 + 3 x 1 ) a n = 5 2

Got questions? Get instant answers now!

Nature of scalar product

Problem : Verify vector equality B = C , if A.B = A.C .

Solution : The given equality of dot products is :

A . B = A . C

The equality will result if B = C . We must, however, understand that dot product is not a simple algebraic product of two numbers (read magnitudes). The angle between two vectors plays a role in determining the magnitude of the dot product. Hence, it is entirely possible that vectors B and C are different yet their dot products with common vector A are equal.

We can attempt this question mathematically as well. Let θ 1 and θ 2 be the angles for first and second pairs of dot products. Then,

A . B = A . C

AB cos θ 1 = AC cos θ 2

If θ 1 = θ 2 , then B = C . However, if θ 1 θ 2 , then B C .

Got questions? Get instant answers now!

Scalar product of a vector with itself

Problem : If | a + b | = | a b |, then find the angle between vectors a and b .

Solution : A question that involves modulus or magnitude of vector can be handled in specific manner to find information about the vector (s). The specific identity that is used in this circumstance is :

A . A = A 2

We use this identity first with the sum of the vectors ( a + b ),

( a + b ) . ( a + b ) = | a + b | 2

Using distributive property,

a . a + b . a + a . b + b . b = a 2 + b 2 + 2 a b cos θ = | a + b | 2 | a + b | 2 = a 2 + b 2 + 2 a b cos θ

Similarly, using the identity with difference of the vectors (a-b),

| a - b | 2 = a 2 + b 2 - 2 a b cos θ

It is, however, given that :

| a + b | = | a - b |

Squaring on either side of the equation,

| a + b | 2 = | a - b | 2

Putting the expressions,

a 2 + b 2 + 2 a b cos θ = a 2 + b 2 - 2 a b cos θ 4 a b cos θ = 0 cos θ = 0 θ = 90 °

Note : We can have a mental picture of the significance of this result. As given, the magnitude of sum of two vectors is equal to the magnitude of difference of two vectors. Now, we know that difference of vectors is similar to vector sum with one exception that one of the operand is rendered negative. Graphically, it means that one of the vectors is reversed.

Reversing one of the vectors changes the included angle between two vectors, but do not change the magnitudes of either vector. It is, therefore, only the included angle between the vectors that might change the magnitude of resultant. In order that magnitude of resultant does not change even after reversing direction of one of the vectors, it is required that the included angle between the vectors is not changed. This is only possible, when included angle between vectors is 90°. See figure.

Sum and difference of two vectors

Magnitudes of Sum and difference of two vectors are same when vectors at right angle to each other.

Got questions? Get instant answers now!

Problem : If a and b are two non-collinear unit vectors and | a + b | = √3, then find the value of expression :

( a - b ) . ( 2 a + b )

Solution : The given expression is scalar product of two vector sums. Using distributive property we can expand the expression, which will comprise of scalar product of two vectors a and b .

( a - b ) . ( 2 a + b ) = 2 a . a + a . b - b . 2 a + ( - b ) . ( - b ) = 2 a 2 - a . b - b 2

( a - b ) . ( 2 a + b ) = 2 a 2 - b 2 - a b cos θ

We can evaluate this scalar product, if we know the angle between them as magnitudes of unit vectors are each 1. In order to find the angle between the vectors, we use the identity,

A . A = A 2

Now,

| a + b | 2 = ( a + b ) . ( a + b ) = a 2 + b 2 + 2 a b cos θ = 1 + 1 + 2 x 1 x 1 x cos θ

| a + b | 2 = 2 + 2 cos θ

It is given that :

| a + b | 2 = ( 3 ) 2 = 3

Putting this value,

2 cos θ = | a + b | 2 - 2 = 3 - 2 = 1

cos θ = 1 2 θ = 60 °

Using this value, we now proceed to find the value of given identity,

( a - b ) . ( 2 a + b ) = 2 a 2 - b 2 - a b cos θ = 2 x 1 2 - 1 2 - 1 x 1 x cos 60 °

( a - b ) . ( 2 a + b ) = 1 2

Got questions? Get instant answers now!

Evaluation of dot product

Problem : In an experiment of light reflection, if a , b and c are the unit vectors in the direction of incident ray, reflected ray and normal to the reflecting surface, then prove that :

b = a - 2 ( a . c ) c

Solution : Let us consider vectors in a coordinate system in which “x” and “y” axes of the coordinate system are in the direction of reflecting surface and normal to the reflecting surface respectively as shown in the figure.

Reflection

Angle of incidence is equal to angle of reflection.

We express unit vectors with respect to the incident and reflected as :

a = sin θ i - cos θ j b = sin θ i + cos θ j

Subtracting first equation from the second equation, we have :

b - a = 2 cos θ j b = a + 2 cos θ j

Now, we evaluate dot product, involving unit vectors :

a . c = 1 x 1 x cos ( 180 ° - θ ) = - cos θ

Substituting for cosθ, we have :

b = a - 2 ( a . c ) c

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask