<< Chapter < Page Chapter >> Page >

And so – well, so if you set delta to be two KE so negative two gamma squared M. This is that form that I had on the left. And if you solve for M, what you find is that there’s an equivalent form of this result that says that so long as your training set assigns M as greater than this. And this is the formula that I get by solving for M. Okay? So long as M is greater than equal to this, then with probability, which I’m abbreviating to WP again, with probability at least one minus delta, we have for all. Okay? So this says how large a training set size that I need to guarantee that with probability at least one minus delta, we have the training error is within gamma of generalization error for all my hypotheses, and this gives an answer.

And just to give this another name, this is an example of a sample complexity bound. So from undergrad computer science classes you may have heard of computational complexity, which is how much computations you need to achieve something. So sample complexity just means how large a training example – how large a training set – how large a sample of examples do you need in order to achieve a certain bound and error. And it turns out that in many of the theorems we write out you can pose them in sort of a form of probability bound or a sample complexity bound or in some other form. I personally often find the sample complexity bounds the most easy to interpret because it says how large a training set do you need to give a certain bound on the errors.

And in fact – well, we’ll see this later, sample complexity bounds often sort of help to give guidance for really if you’re trying to achieve something on a machine learning problem, this really is trying to give guidance on how much training data you need to prove something.

The one thing I want to note here is that M grows like the log of K, right, so the log of K grows extremely slowly as a function of K. The log is one of the slowest growing functions, right. It’s one of – well, some of you may have heard this, right? That for all values of K, right – I learned this from a colleague, Andrew Moore, at Carnegie Mellon – that in computer science for all practical purposes for all values of K, log K is less [inaudible], this is almost true. So log K is – logs is one of the slowest growing functions, and so the fact that M sample complexity grows like the log of K, means that you can increase this number of hypotheses in your hypothesis class quite a lot and the number of the training examples you need won’t grow very much.

[Inaudible]. This property will be important later when we talk about infinite hypothesis classes. The final form is the – I guess is sometimes called the error bound, which is when you hold M and delta fixed and solved for gamma. And so – and what do you do – what you get then is that the probability at least one minus delta, we have that. For all hypotheses in my hypothesis class, the difference in the training generalization error would be less than equal to that. Okay? And that’s just solving for gamma and plugging the value I get in there. Okay?

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Machine learning. OpenStax CNX. Oct 14, 2013 Download for free at http://cnx.org/content/col11500/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Machine learning' conversation and receive update notifications?

Ask