<< Chapter < Page Chapter >> Page >
The module will introduce the concepts of a random signal and a random process.

Before now, you have probably dealt strictly with the theory behind signals and systems, as well as look at some the basiccharacteristics of signals and systems . In doing so you have developed an important foundation; however, most electrical engineers do notget to work in this type of fantasy world. In many cases the signals of interest are very complex due to the randomness ofthe world around them, which leaves them noisy and often corrupted. This often causes the information contained in thesignal to be hidden and distorted. For this reason, it is important to understand these random signals and how to recoverthe necessary information.

Signals: deterministic vs. stochastic

For this study of signals and systems, we will divide signals into two groups: those that have a fixed behavior and thosethat change randomly. As most of you have probably already dealt with the first type, we will focus on introducing you torandom signals. Also, note that we will be dealing strictly with discrete-time signals since they are the signals we dealwith in DSP and most real-world computations, but these same ideas apply to continuous-time signals.

Deterministic signals

Most introductions to signals and systems deal strictly with deterministic signals . Each value of these signals are fixed and can be determined by a mathematicalexpression, rule, or table. Because of this, future values of any deterministic signal can be calculated from pastvalues. For this reason, these signals are relatively easy to analyze as they do not change, and we can make accurateassumptions about their past and future behavior.

Deterministic signal

An example of a deterministic signal, the sine wave.

Stochastic signals

Unlike deterministic signals, stochastic signals , or random signals , are not so nice. Random signals cannot be characterized by a simple,well-defined mathematical equation and their future values cannot be predicted. Rather, we must use probability andstatistics to analyze their behavior. Also, because of their randomness, average values from a collection of signals are usually studied rather than analyzing one individual signal.

Random signal

We have taken the above sine wave and added random noise to it to come up with a noisy, or random, signal. Theseare the types of signals that we wish to learn how to deal with so that we can recover the original sine wave.

Random process

As mentioned above, in order to study random signals, we want to look at a collection of these signals rather than just oneinstance of that signal. This collection of signals is called a random process .

random process
A family or ensemble of signals that correspond to every possible outcome of a certain signal measurement. Eachsignal in this collection is referred to as a realization or sample function of the process.

Random sinusoidal process

A random sinusoidal process, with the amplitude and phase being random numbers.

A random process is usually denoted by X t or X n , with x t or x n used to represent an individual signal or waveform from this process.

In many notes and books, you might see the following notation and terms used to describe different types of randomprocesses. For a discrete random process , sometimes just called a random sequence , t represents time that has a finite number of values. If t can take on any value of time, we have a continuous random process . Often times discrete and continuous refer to the amplitude of the process, and process or sequencerefer to the nature of the time variable. For this study, we often just use random process to refer to a general collection of discrete-time signals, as seen above in .

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Signal and information processing for sonar. OpenStax CNX. Dec 04, 2007 Download for free at http://cnx.org/content/col10422/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signal and information processing for sonar' conversation and receive update notifications?

Ask