<< Chapter < Page Chapter >> Page >

MachineLearning-Lecture08

Instructor (Andrew Ng) :Okay. Good morning. Welcome back. If you haven’t given me the homework yet, you can just give it to me at the end of class. That’s fine. Let’s see. And also just a quick reminder – I’ve actually seen project proposals start to trickle in already, which is great. As a reminder, project proposals are due this Friday, and if any of you want to meet and chat more about project ideas, I also have office hours immediately after lecture today. Are there any questions about any of that before I get started today? Great.

Okay. Welcome back. What I want to do today is wrap up our discussion on support vector machines and in particular we’ll also talk about the idea of kernels and then talk about [inaudible] and then I’ll talk about the SMO algorithm, which is an algorithm for solving the optimization problem that we posed last time.

To recap, we wrote down the following context optimization problem. All this is assuming that the data is linearly separable, which is an assumption that I’ll fix later, and so with this optimization problem, given a training set, this will find the optimal margin classifier for the data set that maximizes this geometric margin from your training examples.

And so in the previous lecture, we also derived the dual of this problem, which was to maximize this. And this is the dual of our primal [inaudible] optimization problem. Here, I’m using these angle brackets to denote inner product, so this is just XI transpose XJ for vectors XI and XJ. We also worked out the ways W would be given by sum over I alpha I YI XI.

Therefore, when you need to make a prediction of classification time, you need to compute the value of the hypothesis applied to an [inaudible], which is G of W transpose X plus B where G is that threshold function that outputs plus one and minus one. And so this is G of sum over I alpha I. So that can also be written in terms of inner products between input vectors X.

So what I want to do is now talk about the idea of kernels, which will make use of this property because it turns out you can take the only dependers of the algorithm on X is through these inner products. In fact, you can write the entire algorithm without ever explicitly referring to an X vector [inaudible] between input feature vectors. And the idea of a high kernel is as following – let’s say that you have an input attribute. Let’s just say for now it’s a real number. Maybe this is the living area of a house that you’re trying to make a prediction on, like whether it will be sold in the next six months.

Quite often, we’ll take this feature X and we’ll map it to a richer set of features. So for example, we will take X and map it to these four polynomial features, and let me acutely call this mapping Phi. So we’ll let Phi of X denote the mapping from your original features to some higher dimensional set of features.

So if you do this and you want to use the features Phi of X, then all you need to do is go back to the learning algorithm and everywhere you see XI, XJ, we’ll replace it with the inner product between Phi of XI and Phi of XJ. So this corresponds to running a support vector machine with the features given by Phi of X rather than with your original one-dimensional input feature X.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Machine learning. OpenStax CNX. Oct 14, 2013 Download for free at http://cnx.org/content/col11500/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Machine learning' conversation and receive update notifications?

Ask