<< Chapter < Page Chapter >> Page >

So for the sake of – so what I'm going to do now is write down formally the certain conditions under which that's true – where the primal and the duo problems are equivalent. And so our strategy for working out the [inaudible] of support vector machine algorithm will be that we'll write down the primal optimization problem, which we did previously, and maximizing classifier.

And then we'll derive the duo optimization problem for that. And then we'll solve the duo problem. And by modifying that a little bit, that's how we'll derive this support vector machine.

But let me ask you – for now, let me just first, for the sake of completeness, I just write down the conditions under which the primal and the duo optimization problems give you the same solutions. So let f be convex. If you're not sure what convex means, for the purposes of this class, you can take it to mean that the Hessian, h is positive. [Inaudible], so it just means it's a [inaudible]function like that.

And once you learn more about optimization – again, please come to this week's discussion session taught by the TAs.

Then suppose hi – the hi constraints [inaudible], and what that means is that hi of w equals alpha i transpose w plus vi. This actually means the same thing as linear. Without the term b here, we say that hi is linear where we have a constant interceptor as well. This is technically called [inaudible]other than linear.

And let's suppose that gi's are strictly feasible. And what that means is that there is just a value of the w such that from i, gi of w is less than 0. Don't worry too much [inaudible]. I'm writing these things down for the sake of completeness, but don't worry too much about all the technical details. Strictly feasible, which just means that there's a value of w such that all of these constraints are satisfy were stricter than the equality rather than what less than equal to.

Under these conditions, there were exists w star, alpha star, beta star such that w star solves the primal problem. And alpha star and beta star, the Lagrange multipliers, solve the duo problem. And the value of the primal problem will be equal to the value of the duo problem will be equal to the value of your Lagrange multiplier – excuse me, will be equal to the value of your generalized Lagrange, the value of that w star, alpha star, beta star.

In other words, you can solve either the primal or the duo problem. You get the same solution.

Further, your parameters will satisfy these conditions. Partial derivative perspective parameters would be 0. And actually, to keep this equation in mind, we'll actually use this in a second when we take the Lagrange, and we – and our support vector machine problem, and take a derivative with respect to w to solve a – to solve our – to derive our duo problem. We'll actually perform this step ourselves in a second.

Partial derivative with respect to the Lagrange multiplier beta is equal to 0. Turns out this will hold true, too. This is called the – well – this is called the KKT complementary condition. KKT stands for Karush-Kuhn-Tucker, which were the authors of this theorem. Well, and by tradition, usually this [inaudible]KKT conditions. But the other two are – just so the [inaudible] is greater than 0, which we had previously and that your constraints are actually satisfied.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Machine learning. OpenStax CNX. Oct 14, 2013 Download for free at http://cnx.org/content/col11500/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Machine learning' conversation and receive update notifications?

Ask