<< Chapter < Page Chapter >> Page >

Problem : A projectile is projected up with a velocity √(2ag) at an angle “θ” from an elevated position as shown in the figure. Find the maximum horizontal range that can be achieved.

Projectile motion

Projectile projected from an elevated point .

Solution : In order to determine the maximum horizontal range, we need to find an expression involving horizontal range. We shall use the equation of projectile as we have the final coordinates of the motion as shown in the figure below :

Projectile motion

Projectile projected from an elevated point .

y = x tan θ g x 2 2 u 2 cos 2 θ

Substituting and changing trigonometric ratio with the objective to create a quadratic equation in “tan θ” :

H = R tan θ g R 2 2 { 2 a g } 2 1 + tan 2 θ

Rearranging, we have :

R 2 tan 2 θ 4 a R tan θ + R 2 4 a H = 0

tan θ = 4 a R ± { 4 a R 2 4 R 2 R 2 4 a H } 2 R 2

For tan θ to be real, it is required that

16 a 2 R 2 4 R 2 R 2 4 a H

4 a 2 R 2 4 a H

R 2 4 a a + H

R ± 2 a a + H

Hence, maximum possible range is :

R = 2 a a + H

Got questions? Get instant answers now!

Initial velocity

Problem : A ball is thrown horizontally from the top of the tower to hit the ground at an angle of 45° in 2 s. Find the speed of the ball with which it was projected.

Solution : The question provides the angle at which the ball hits the ground. A hit at 45° means that horizontal and vertical speeds are equal.

tan 45 0 = v y v x = 1

v x = v y

However, we know that horizontal component of velocity does not change with time. Hence, final velocity in horizontal direction is same as initial velocity in that direction.

v x = v y = u x

We can now find the vertical component of velocity at the time projectile hits the ground by considering motion in vertical direction. Here, u y = 0, t = 2 s .

Using equation of motion in vertical direction, assuming downward direction as positive :

v y = u y + a t

v y = 0 + 10 X 2 = 20 m / s

Hence, the speed with which the ball was projected in horizontal direction is :

u x = v y = 20 m / s

Got questions? Get instant answers now!

Final velocity

Problem : A ball “A” is thrown from the edge of building “h”, at an angle of 30° from the horizontal, in upward direction. Another ball ”B” is thrown at the same speed from the same position, making same angle with horizontal, in vertically downward direction. If "u" be the speed of projection, then find their speed at the time of striking the ground.

Solution : The horizontal components of velocity for two projectiles are equal. Further, horizontal component of velocity remains unaltered during projectile motion. The speed of the projectile at the time of striking depends solely on vertical component of velocity. For the shake of convenience of analysis, we consider point of projection as the origin of coordinate system and vertically downward direction as positive y - direction.

Projectile motion

Motion in vertical direction :

For A, u yA = - u sin 30 0 = - u 2

For B, u yB = u sin 30 0 = u 2

Thus, velocities in vertical direction are equal in magnitude, but opposite in direction. The ball,"A", which is thrown upward, returns after reaching the maximum vertical height. For consideration in vertical direction, the ball returns to the point of projection with same speed it was projected. What it means that the vertical component of velocity of ball "A" on return at the point projection is "u/2". This further means that two balls "A" and "B", as a matter of fact, travel down with same downward vertical component of velocity.

In other words, the ball "A" returns to its initial position acquiring same speed "u/2" as that of ball "B" before starting its downward journey. Thus, speeds of two balls are same i.e "u/2" for downward motion. Hence, two balls strike the ground with same speed. Let the final speed is "v".

Now, we apply equation of motion to determine the final speed in the vertical direction.

v y 2 = u y 2 + 2 g h

Putting values, we have :

v y 2 = u 2 2 + 2 g h = u 2 + 8 g h 4

v y = u 2 + 8 g h 2

The horizontal component of velocity remains same during the journey. It is given as :

v x = u cos 30 0 = 3 u 2

The resultant of two mutually perpendicular components is obtained, using Pythagoras theorem :

v 2 = v x 2 + v y 2 = 3 u 2 4 + u 2 + 8 g h 4

v 2 = 3 u 2 + u 2 + 8 g h 4 = u 2 + 2 g h

v = u 2 + 2 g h

Questions & Answers

profit maximize for monopolistically?
Usman Reply
what kind of demand curve under monopoly?
Mik Reply
what is the difference between inflation and scarcity ?
Abdu Reply
What stops oligopolists from acting together as a monopolist and earning the highest possible level of profits?
Mik
why economics is difficult for 2nd school students.
Siraj Reply
what does mean opportunity cost?
Aster Reply
what is poetive effect of population growth
Solomon Reply
what is inflation
Nasir Reply
what is demand
Eleni
what is economics
IMLAN Reply
economics theory describes individual behavior as the result of a process of optimization under constraints the objective to be reached being determined by
Kalkidan
Economics is a branch of social science that deal with How to wise use of resource ,s
Kassie
need
WARKISA
Economic Needs: In economics, needs are goods or services that are necessary for maintaining a certain standard of living. This includes things like healthcare, education, and transportation.
Kalkidan
What is demand and supply
EMPEROR Reply
deman means?
Alex
what is supply?
Alex
ex play supply?
Alex
Money market is a branch or segment of financial market where short-term debt instruments are traded upon. The instruments in this market includes Treasury bills, Bonds, Commercial Papers, Call money among other.
murana Reply
good
Kayode
what is money market
umar Reply
Examine the distinction between theory of comparative cost Advantage and theory of factor proportion
Fatima Reply
What is inflation
Bright Reply
a general and ongoing rise in the level of prices in an economy
AI-Robot
What are the factors that affect demand for a commodity
Florence Reply
price
Kenu
differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Kinematics fundamentals. OpenStax CNX. Sep 28, 2008 Download for free at http://cnx.org/content/col10348/1.29
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Kinematics fundamentals' conversation and receive update notifications?

Ask