<< Chapter < Page Chapter >> Page >

What else can we learn by examining the equation x = x 0 + v 0 t + 1 2 at 2 ? size 12{x=x rSub { size 8{0} } +v rSub { size 8{0} } t+ { {1} over {2} } ital "at" rSup { size 8{2} } } {} We see that:

  • displacement depends on the square of the elapsed time when acceleration is not zero. In [link] , the dragster covers only one fourth of the total distance in the first half of the elapsed time
  • if acceleration is zero, then the initial velocity equals average velocity ( v 0 = v - size 12{v rSub { size 8{0} } = { bar {v}}} {} ) and x = x 0 + v 0 t + 1 2 at 2 size 12{x=x rSub { size 8{0} } +v rSub { size 8{0} } t+ { {1} over {2} } ital "at" rSup { size 8{2} } } {} becomes x = x 0 + v 0 t size 12{x=x rSub { size 8{0} } +v rSub { size 8{0} } t} {}

Solving for final velocity when velocity is not constant ( a 0 )

A fourth useful equation can be obtained from another algebraic manipulation of previous equations.

If we solve v = v 0 + at size 12{v=v rSub { size 8{0} } + ital "at"} {} for t size 12{t} {} , we get

t = v v 0 a . size 12{t= { {v - v rSub { size 8{0} } } over {a} } "." } {}

Substituting this and v - = v 0 + v 2 size 12{ { bar {v}}= { {v rSub { size 8{0} } +v} over {2} } } {} into x = x 0 + v - t size 12{x=x rSub { size 8{0} } + { bar {v}}t} {} , we get

v 2 = v 0 2 + 2 a x x 0 ( constant a ) . size 12{v rSup { size 8{2} } =v rSub { size 8{0} } rSup { size 8{2} } +2a left (x - x rSub { size 8{0} } right )" " \( "constant "a \) "." } {}

Calculating final velocity: dragsters

Calculate the final velocity of the dragster in [link] without using information about time.

Strategy

Draw a sketch.

Acceleration vector arrow pointing toward the right, labeled twenty-six point zero meters per second squared. Initial velocity equals 0. Final velocity equals question mark.

The equation v 2 = v 0 2 + 2 a ( x x 0 ) is ideally suited to this task because it relates velocities, acceleration, and displacement, and no time information is required.

Solution

1. Identify the known values. We know that v 0 = 0 size 12{v rSub { size 8{0} } =0} {} , since the dragster starts from rest. Then we note that x x 0 = 402 m size 12{x - x rSub { size 8{0} } ="402 m"} {} (this was the answer in [link] ). Finally, the average acceleration was given to be a = 26 . 0 m/s 2 size 12{a="26" "." "0 m/s" rSup { size 8{2} } } {} .

2. Plug the knowns into the equation v 2 = v 0 2 + 2 a ( x x 0 ) and solve for v .

v 2 = 0 + 2 26 . 0 m/s 2 402 m . size 12{v rSup { size 8{2} } =0+2 left ("26" "." "0 m/s" rSup { size 8{2} } right ) left ("402 m" right )} {}

Thus

v 2 = 2 . 09 × 10 4 m 2 /s 2 . size 12{v rSup { size 8{2} } =2 "." "09" times "10" rSup { size 8{4} } `m rSup { size 8{2} } "/s" rSup { size 8{2} } } {}

To get v size 12{v} {} , we take the square root:

v = 2 . 09 × 10 4 m 2 /s 2 = 145 m/s .

Discussion

145 m/s is about 522 km/h or about 324 mi/h, but even this breakneck speed is short of the record for the quarter mile. Also, note that a square root has two values; we took the positive value to indicate a velocity in the same direction as the acceleration.

An examination of the equation v 2 = v 0 2 + 2 a ( x x 0 ) size 12{v rSup { size 8{2} } =v rSub { size 8{0} } rSup { size 8{2} } +2a \( x - x rSub { size 8{0} } \) } {} can produce further insights into the general relationships among physical quantities:

  • The final velocity depends on how large the acceleration is and the distance over which it acts
  • For a fixed deceleration, a car that is going twice as fast doesn't simply stop in twice the distance—it takes much further to stop. (This is why we have reduced speed zones near schools.)

Putting equations together

In the following examples, we further explore one-dimensional motion, but in situations requiring slightly more algebraic manipulation. The examples also give insight into problem-solving techniques. The box below provides easy reference to the equations needed.

Summary of kinematic equations (constant a size 12{a} {} )

x = x 0 + v - t size 12{x=`x rSub { size 8{0} } `+` { bar {v}}t} {}
v - = v 0 + v 2 size 12{ { bar {v}}=` { {v rSub { size 8{0} } +v} over {2} } } {}
v = v 0 + at size 12{v=v rSub { size 8{0} } + ital "at"} {}
x = x 0 + v 0 t + 1 2 at 2 size 12{x=x rSub { size 8{0} } +v rSub { size 8{0} } t+ { {1} over {2} } ital "at" rSup { size 8{2} } } {}
v 2 = v 0 2 + 2 a x x 0 size 12{v rSup { size 8{2} } =v rSub { size 8{0} } rSup { size 8{2} } +2a left (x - x rSub { size 8{0} } right )} {}

Calculating displacement: how far does a car go when coming to a halt?

On dry concrete, a car can decelerate at a rate of 7 . 00 m/s 2 size 12{7 "." "00 m/s" rSup { size 8{2} } } {} , whereas on wet concrete it can decelerate at only 5 . 00 m/s 2 size 12{5 "." "00 m/s" rSup { size 8{2} } } {} . Find the distances necessary to stop a car moving at 30.0 m/s (about 110 km/h) (a) on dry concrete and (b) on wet concrete. (c) Repeat both calculations, finding the displacement from the point where the driver sees a traffic light turn red, taking into account his reaction time of 0.500 s to get his foot on the brake.

Strategy

Draw a sketch.

Initial velocity equals thirty meters per second. Final velocity equals 0. Acceleration dry equals negative 7 point zero zero meters per second squared. Acceleration wet equals negative 5 point zero zero meters per second squared.

In order to determine which equations are best to use, we need to list all of the known values and identify exactly what we need to solve for. We shall do this explicitly in the next several examples, using tables to set them off.

Questions & Answers

why we learn economics ? Explain briefly
ayalew Reply
why we learn economics ?
ayalew
why we learn economics
ayalew
profit maximize for monopolistically?
Usman Reply
what kind of demand curve under monopoly?
Mik Reply
what is the difference between inflation and scarcity ?
Abdu Reply
What stops oligopolists from acting together as a monopolist and earning the highest possible level of profits?
Mik
why economics is difficult for 2nd school students.
Siraj Reply
what does mean opportunity cost?
Aster Reply
what is poetive effect of population growth
Solomon Reply
what is inflation
Nasir Reply
what is demand
Eleni
what is economics
IMLAN Reply
economics theory describes individual behavior as the result of a process of optimization under constraints the objective to be reached being determined by
Kalkidan
Economics is a branch of social science that deal with How to wise use of resource ,s
Kassie
need
WARKISA
Economic Needs: In economics, needs are goods or services that are necessary for maintaining a certain standard of living. This includes things like healthcare, education, and transportation.
Kalkidan
What is demand and supply
EMPEROR Reply
deman means?
Alex
what is supply?
Alex
ex play supply?
Alex
Money market is a branch or segment of financial market where short-term debt instruments are traded upon. The instruments in this market includes Treasury bills, Bonds, Commercial Papers, Call money among other.
murana Reply
good
Kayode
what is money market
umar Reply
Examine the distinction between theory of comparative cost Advantage and theory of factor proportion
Fatima Reply
What is inflation
Bright Reply
a general and ongoing rise in the level of prices in an economy
AI-Robot
What are the factors that affect demand for a commodity
Florence Reply
price
Kenu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Sample chapters: openstax college physics for ap® courses. OpenStax CNX. Oct 23, 2015 Download for free at http://legacy.cnx.org/content/col11896/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Sample chapters: openstax college physics for ap® courses' conversation and receive update notifications?

Ask