<< Chapter < Page Chapter >> Page >
This module is from Elementary Algebra by Denny Burzynski and Wade Ellis, Jr. Factoring is an essential skill for success in algebra and higher level mathematics courses. Therefore, we have taken great care in developing the student's understanding of the factorization process. The technique is consistently illustrated by displaying an empty set of parentheses and describing the thought process used to discover the terms that are to be placed inside the parentheses.The factoring scheme for special products is presented with both verbal and symbolic descriptions, since not all students can interpret symbolic descriptions alone. Two techniques, the standard "trial and error" method, and the "collect and discard" method (a method similar to the "ac" method), are presented for factoring trinomials with leading coefficients different from 1. Objectives of this module: be able to factor trinomials with leading coefficient other than 1.

Overview

  • The Method of Factorization

The method of factorization

In the last section we saw that we could easily factor trinomials of the form x 2 b x c by finding the factors of the constant c that add to the coefficient of the linear term b , as shown in the following example:

Factor x 2 - 4 x - 21 .
The third term of the trinomial is 21 . We seek two numbers whose

(a) product is 21 and
(b) sum is 4 .

The required numbers are 7 and + 3 .

x 2 - 4 x - 21 ( x - 7 ) ( x 3 )

The problem of factoring the polynomial a x 2 b x c , a≠1 , becomes more involved. We will study two methods of factoring such polynomials. Each method produces the same result, and you should select the method you are most comfortable with. The first method is called the trial and error method and requires some educated guesses. We will examine two examples (Sample Sets A and B). Then, we will study a second method of factoring. The second method is called the collect and discard method , and it requires less guessing than the trial and error method. Sample Set C illustrates the use of the collect and discard method.

The trial and error method of factoring a x 2 + b x + c

Trial and error method

Consider the product

Steps showing the product of two binomials 'four x plus three,' and 'five x plus two.' See the longdesc for a full description.

Examining the trinomial 20 x 2 23 x 6 , we can immediately see some factors of the first and last terms.

20 x 2 6
20 x , x 6 , 1
10 x , 2 x 3 , 2
5 x , 4 x


Our goal is to choose the proper combination of factors of the first and last terms that yield the middle term 23 x .
Notice that the middle term comes from the sum of the outer and inner products in the multiplication of the two binomials.
The product of two binomials four x plus three, and five x plus two. The outer product of binomials is eight x, and the inner product is fifteen x.
This fact provides us a way to find the proper combination.

Look for the combination that when multiplied and then added yields the middle term.

The proper combination we're looking for is

The product of the first and the last term is twenty x squared. One of the combinations of the factors of the first and last term yields two new factors of the product such that their sum is the middle term: twenty three x.

Sample set a

Factor 6 x 2 + x 12 .

Factor the first and last terms.

The factors of the first term 'six x squared' and the last term 'negative twelve' are shown. The product of the first and the last term is negative seventy-two x squared. One of the combinations of the factors of the first and the last term yields two new factors of the product such that their sum is the middle term: x.

Thus, 3 x and 3 are to be multiplied, 2 x and 4 are to be multiplied.

6 x 2 + x 12 = ( ) ( ) Put the factors of the leading term in immediately . = ( 3 x ) ( 2 x ) Since 3 x and 3 are to be multiplied, they must be located in different binomials . = ( 3 x ) ( 2 x + 3 ) Place the 4 in the remaining set of parentheses . = ( 3 x 4 ) ( 2 x + 3 ) 6 x 2 + x 12 = ( 3 x 4 ) ( 2 x + 3 )

C h e c k : ( 3 x 4 ) ( 2 x + 3 ) = 6 x 2 + 9 x 8 x 12 = 6 x 2 + x 12

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra ii for the community college. OpenStax CNX. Jul 03, 2014 Download for free at http://cnx.org/content/col11671/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra ii for the community college' conversation and receive update notifications?

Ask