<< Chapter < Page Chapter >> Page >
discusses the achievements and prospects for simulations of biomolecules

Key Concepts

  • Simulation of Biomolecules

Introduction

In many of the physical sciences, our theoretical understanding has developed alongside experimental discoveries, for example in the fields of electromagnetism, optics and semiconductor physics. Theory has provided the design principles which have then enabled engineers to maximise the potential applications of these new technologies. However, there are many instances in which simple phenomenological models cannot capture the complexity of the systems in question: notable examples are the chemistry of the atmosphere, which has implications for prediction of weather patterns and climate change, or the properties of materials at the nanoscale, such as chemically functionalised carbon nanotubes, which will become increasingly important in nanoengineering.

Arguably, the most complex materials of all are biological macromolecules; namely proteins, DNA, lipids, sugars and their interactions. Biological macromolecules routinely perform extraordinary functions such as biomolecular recognition (Figure 1a), enzyme catalysis, self-assembly (Figure 1b) and self-organisation. Moreover, there are many examples of molecular motors within the cell (Figure 1c). These are nanoscale machines capable of burning chemical energy to perform work. The theoretical challenge of understanding these systems is more than offset by the potential benefits. For example, our current understanding of molecular recognition has already enabled us to rationally design new drugs in silico to inhibit or promote a given biomolecular interaction; in the future nano-computer aided design may be used to design our own molecular devices of equivalent complexity to biological molecular motors, but which perform a bespoke function.

If we had an equivalent theoretical understanding of biological systems as we have of semiconductors, then whole new regimes of bio-inspired engineering at the nanoscale would become possible. To achieve this, we need to combine our existing physical understanding of mechanics and thermodynamics with a theoretical technique that is capable of including chemical complexity. The only suitable methodology is High Performance Supercomputing (HPC).

Atomistic Molecular Dynamics Simulation: Keap1 Protein

The most successful biomolecular simulation methods to date use Newtonian mechanics in conjunction with an empirical force-field to produce a mathematical model of the interactions between every single atom in the macromolecule with chemical accuracy; the calculation results in a series of molecular conformations (or a “movie”) that illustrates the changing shape of the biomolecule due to thermal fluctuations.

An atomistic model of a 90 base pair DNA nano-circle, showing the presence of explicit water molecules [1].

This technique is known as atomistic molecular dynamics (MD) simulation. Biomolecules are naturally highly responsive materials, as is required by their function. Consequently, the most accurate simulations of biological macromolecules must also include a description of the solvent environment (see Figure 2), which usually consists of water and counterions. Typically, such a calculation will contain ~150,000 atoms, and will require over 750 CPU hrs to obtain a 1ns MD trajectory using the AMBER suite of MD programs.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Research in a connected world. OpenStax CNX. Nov 22, 2009 Download for free at http://cnx.org/content/col10677/1.12
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Research in a connected world' conversation and receive update notifications?

Ask