<< Chapter < Page Chapter >> Page >

Dimension

Let V be a vector space with basis B . The dimension of V , denoted dim V , is the cardinality of B .

Every vector space has a basis.

Every basis for a vector space has the same cardinality.

dim V is well-defined .

If dim V , we say V is finite dimensional .

Examples

vector space field of scalars dimension
N
N
N

Every subspace is a vector space, and therefore has its own dimension.

Suppose S u 1 u k V is a linearly independent set. Then dim < S >

    Facts

  • If S is a subspace of V , then dim S dim V .
  • If dim S dim V , then S V .

Direct sums

Let V be a vector space, and let S V and T V be subspaces.

We say V is the direct sum of S and T , written V S T , if and only if for every v V , there exist unique s S and t T such that v s t .

If V S T , then T is called a complement of S .

V C { f : | f is continuous } S even funcitons in C T odd funcitons in C f t 1 2 f t f t 1 2 f t f t If f g h g h , g S and g S , h T and h T , then g g h h is odd and even, which implies g g and h h .

Facts

  • Every subspace has a complement
  • V S T if and only if
    • S T 0
    • < S , T > V
  • If V S T , and dim V , then dim V dim S dim T

Proofs

Invoke a basis.

Norms

Let V be a vector space over F . A norm is a mapping V F , denoted by , such that forall u V , v V , and F

  • u 0 if u 0
  • u u
  • u v u v

Examples

Euclidean norms:

x N : x i 1 N x i 2 1 2 x N : x i 1 N x i 2 1 2

Induced metric

Every norm induces a metric on V d u v u v which leads to a notion of "distance" between vectors.

Inner products

Let V be a vector space over F , F or . An inner product is a mapping V V F , denoted , such that

  • v v 0 , and v v 0 v 0
  • u v v u
  • a u b v w a u w b v w

Examples

N over: x y x y i 1 N x i y i

N over: x y x y i 1 N x i y i

If x x 1 x N , then x x 1 x N is called the "Hermitian," or "conjugatetranspose" of x .

Triangle inequality

If we define u u u , then u v u v Hence, every inner product induces a norm.

Cauchy-schwarz inequality

For all u V , v V , u v u v In inner product spaces, we have a notion of the angle between two vectors: u v u v u v 0 2

Orthogonality

u and v are orthogonal if u v 0 Notation: u v .

If in addition u v 1 , we say u and v are orthonormal .

In an orthogonal (orthonormal) set , each pair of vectors is orthogonal (orthonormal).

Orthogonal vectors in 2 .

Orthonormal bases

An Orthonormal basis is a basis v i such that v i v i i j 1 i j 0 i j

The standard basis for N or N

The normalized DFT basis u k 1 N 1 2 k N 2 k N N 1

Expansion coefficients

If the representation of v with respect to v i is v i a i v i then a i v i v

Gram-schmidt

Every inner product space has an orthonormal basis. Any (countable) basis can be made orthogonal by theGram-Schmidt orthogonalization process.

Orthogonal compliments

Let S V be a subspace. The orthogonal compliment S is S u u V u v 0 v v S S is easily seen to be a subspace.

If dim v , then V S S .

If dim v , then in order to have V S S we require V to be a Hilbert Space .

Linear transformations

Loosely speaking, a linear transformation is a mapping from one vector space to another that preserves vector space operations.

More precisely, let V , W be vector spaces over the same field F . A linear transformation is a mapping T : V W such that T a u b v a T u b T v for all a F , b F and u V , v V .

In this class we will be concerned with linear transformations between (real or complex) Euclidean spaces , or subspaces thereof.

Image

T w w W T v w for some v

Nullspace

Also known as the kernel: ker T v v V T v 0

Both the image and the nullspace are easily seen to be subspaces.

Rank

rank T dim T

Nullity

null T dim ker T

Rank plus nullity theorem

rank T null T dim V

Matrices

Every linear transformation T has a matrix representation . If T : 𝔼 N 𝔼 M , 𝔼 or , then T is represented by an M N matrix A a 1 1 a 1 N a M 1 a M N where a 1 i a M i T e i and e i 0 1 0 is the i th standard basis vector.

A linear transformation can be represented with respect to any bases of 𝔼 N and 𝔼 M , leading to a different A . We will always represent a linear transformation using the standard bases.

Column span

colspan A < A > A

Duality

If A : N M , then ker A A

If A : N M , then ker A A

Inverses

The linear transformation/matrix A is invertible if and only if there exists a matrix B such that A B B A I (identity).

Only square matrices can be invertible.

Let A : 𝔽 N 𝔽 N be linear, 𝔽 or . The following are equivalent:

  • A is invertible (nonsingular)
  • rank A N
  • null A 0
  • A 0
  • The columns of A form a basis.

If A A (or A in the complex case), we say A is orthogonal (or unitary ).

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Signal and information processing for sonar. OpenStax CNX. Dec 04, 2007 Download for free at http://cnx.org/content/col10422/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signal and information processing for sonar' conversation and receive update notifications?

Ask