<< Chapter < Page Chapter >> Page >
This module is from Fundamentals of Mathematics by Denny Burzynski and Wade Ellis, Jr. This module discusses multiplication of fractions. By the end of the module students should be able to understand the concept of multiplication of fractions, multiply one fraction by another, multiply mixed numbers and find powers and roots of various fractions.

Section overview

  • Fractions of Fractions
  • Multiplication of Fractions
  • Multiplication of Fractions by Dividing Out Common Factors
  • Multiplication of Mixed Numbers
  • Powers and Roots of Fractions

Fractions of fractions

We know that a fraction represents a part of a whole quantity. For example, two fifths of one unit can be represented by

A rectangle equally divided into five parts. Each part is labeled one-fifth. Two of the parts are shaded. 2 5 size 12{ { {2} over {5} } } {} of the whole is shaded.

A natural question is, what is a fractional part of a fractional quantity, or, what is a fraction of a fraction? For example, what 2 3 size 12{ { {2} over {3} } } {} of 1 2 size 12{ { {1} over {2} } } {} ?

We can suggest an answer to this question by using a picture to examine 2 3 size 12{ { {2} over {3} } } {} of 1 2 size 12{ { {1} over {2} } } {} .

First, let’s represent 1 2 size 12{ { {1} over {2} } } {} .

A rectangle equally divided into two parts. Both parts are labeled one-half. One of the parts is shaded. 1 2 size 12{ { {1} over {2} } } {} of the whole is shaded.

Then divide each of the 1 2 size 12{ { {1} over {2} } } {} parts into 3 equal parts.

A rectangle divided into six equal parts in a gridlike fashion, with three rows and two columns. Each part is labeled one-sixth. Below the rectangles are brackets showing that each column of sixths is equal to one-half. Each part is 1 6 size 12{ { {1} over {6} } } {} of the whole.

Now we’ll take 2 3 size 12{ { {2} over {3} } } {} of the 1 2 size 12{ { {1} over {2} } } {} unit.

A rectangle divided into six equal parts in a gridlike fashion, with three rows and two columns. Each part is labeled one-sixth. Below the rectangles are brackets showing that each column of sixths is equal to one-half. The first and second boxes in the left column are shaded. 2 3 size 12{ { {2} over {3} } } {} of 1 2 size 12{ { {1} over {2} } } {} is 2 6 size 12{ { {2} over {6} } } {} , which reduces to 1 3 size 12{ { {1} over {3} } } {} .

Multiplication of fractions

Now we ask, what arithmetic operation (+, –, ×, ÷) will produce 2 6 size 12{ { {2} over {6} } } {} from 2 3 size 12{ { {2} over {3} } } {} of 1 2 size 12{ { {1} over {2} } } {} ?

Notice that, if in the fractions 2 3 size 12{ { {2} over {3} } } {} and 1 2 size 12{ { {1} over {2} } } {} , we multiply the numerators together and the denominators together, we get precisely 2 6 size 12{ { {2} over {6} } } {} .

2 1 3 2 = 2 6 size 12{ { {2 cdot 1} over {3 cdot 2} } = { {2} over {6} } } {}

This reduces to 1 3 size 12{ { {1} over {3} } } {} as before.

Using this observation, we can suggest the following:

  1. The word "of" translates to the arithmetic operation "times."
  2. To multiply two or more fractions, multiply the numerators together and then multiply the denominators together. Reduce if necessary.

numerator 1 denominator 1 numerator 2 denominator 2 = numerator 1 denominator 1 numerator 2 denominator 2

Sample set a

Perform the following multiplications.

3 4 1 6 = 3 1 4 6 = 3 24 Now, reduce.

= 3 1 24 8 = 1 8 size 12{ {}= { { { { {3}}} cSup { size 8{1} } } over { { { {2}} { {4}}} cSub { size 8{8} } } } = { {1} over {8} } } {}

Thus

3 4 1 6 = 1 8 size 12{ { {3} over {4} } cdot { {1} over {6} } = { {1} over {8} } } {}

This means that 3 4 size 12{ { {3} over {4} } } {} of 1 6 size 12{ { {1} over {6} } } {} is 1 8 size 12{ { {1} over {8} } } {} , that is, 3 4 size 12{ { {3} over {4} } } {} of 1 6 size 12{ { {1} over {6} } } {} of a unit is 1 8 size 12{ { {1} over {8} } } {} of the original unit.

3 8 4 size 12{ { {3} over {8} } cdot 4} {} . Write 4 as a fraction by writing 4 1 size 12{ { {4} over {1} } } {}

3 8 4 1 = 3 4 8 1 = 12 8 = 12 3 8 2 = 3 2 size 12{ { {3} over {8} } cdot { {4} over {1} } = { {3 cdot 4} over {8 cdot 1} } = { {"12"} over {8} } = { { { { {1}} { {2}}} cSup { size 8{3} } } over { { { {8}}} cSub { size 8{2} } } } = { {3} over {2} } } {}

3 8 4 = 3 2 size 12{ { {3} over {8} } cdot 4= { {3} over {2} } } {}

This means that 3 8 size 12{ { {3} over {8} } } {} of 4 whole units is 3 2 size 12{ { {3} over {2} } } {} of one whole unit.

2 5 5 8 1 4 = 2 5 1 5 8 4 = 10 1 160 16 = 1 16 size 12{ { {2} over {5} } cdot { {5} over {8} } cdot { {1} over {4} } = { {2 cdot 5 cdot 1} over {5 cdot 8 cdot 4} } = { { { { {1}} { {0}}} cSup { size 8{1} } } over { { { {1}} { {6}} { {0}}} cSub { size 8{"16"} } } } = { { {1} cSup {} } over { {"16"} cSub {} } } } {}

This means that 2 5 size 12{ { {2} over {5} } } {} of 5 8 size 12{ { {5} over {8} } } {} of 1 4 size 12{ { {1} over {4} } } {} of a whole unit is 1 16 size 12{ { {1} over {"16"} } } {} of the original unit.

Practice set a

Perform the following multiplications.

2 5 1 6 size 12{ { {2} over {5} } cdot { {1} over {6} } } {}

1 15 size 12{ { {1} over {"15"} } } {}

1 4 8 9 size 12{ { {1} over {4} } cdot { {8} over {9} } } {}

2 9 size 12{ { {2} over {9} } } {}

4 9 15 16 size 12{ { {4} over {9} } cdot { {15} over {16} } } {}

5 12 size 12{ { {5} over {"12"} } } {}

2 3 2 3 size 12{ left ( { {2} over {3} } right ) left ( { {2} over {3} } right )} {}

4 9 size 12{ { {4} over {9} } } {}

7 4 8 5 size 12{ left ( { {7} over {4} } right ) left ( { {8} over {5} } right )} {}

14 5 size 12{ { {"14"} over {5} } } {}

5 6 7 8 size 12{ { {5} over {6} } cdot { {7} over {8} } } {}

35 48 size 12{ { {"35"} over {"48"} } } {}

2 3 5 size 12{ { {2} over {3} } cdot 5} {}

10 3 size 12{ { {"10"} over {3} } } {}

3 4 10 size 12{ left ( { {3} over {4} } right ) left ("10" right )} {}

15 2 size 12{ { {"15"} over {2} } } {}

3 4 8 9 5 12 size 12{ { {3} over {4} } cdot { {8} over {9} } cdot { {5} over {"12"} } } {}

5 18 size 12{ { {5} over {"18"} } } {}

Multiplying fractions by dividing out common factors

We have seen that to multiply two fractions together, we multiply numerators together, then denominators together, then reduce to lowest terms, if necessary. The reduction can be tedious if the numbers in the fractions are large. For example,

9 16 10 21 = 9 10 16 21 = 90 336 = 45 168 = 15 28 size 12{ { {9} over {"16"} } cdot { {"10"} over {"21"} } = { {9 cdot "10"} over {"16" cdot "21"} } = { {"90"} over {"336"} } = { {"45"} over {"168"} } = { {"15"} over {"28"} } } {}

We avoid the process of reducing if we divide out common factors before we multi­ply.

9 16 10 21 = 9 3 16 8 10 5 21 7 = 3 5 8 7 = 15 56 size 12{ { {9} over {"16"} } cdot { {"10"} over {"21"} } = { { { { {9}}} cSup { size 8{3} } } over { { { {1}} { {6}}} cSub { size 8{8} } } } cdot { { { { {1}} { {0}}} cSup { size 8{5} } } over { { { {2}} { {1}}} cSub { size 8{7} } } } = { {3 cdot 5} over {8 cdot 7} } = { {"15"} over {"56"} } } {}

Divide 3 into 9 and 21, and divide 2 into 10 and 16. The product is a fraction that is reduced to lowest terms.

The process of multiplication by dividing out common factors

To multiply fractions by dividing out common factors, divide out factors that are common to both a numerator and a denominator. The factor being divided out can appear in any numerator and any denominator.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Contemporary math applications. OpenStax CNX. Dec 15, 2014 Download for free at http://legacy.cnx.org/content/col11559/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Contemporary math applications' conversation and receive update notifications?

Ask