<< Chapter < Page
  Dspa   Page 1 / 1
Chapter >> Page >
Details the Continuous-Time Fourier Transform.

Introduction

In this module, we will derive an expansion for any arbitrary continuous-time function, and in doing so, derive the Continuous Time Fourier Transform (CTFT).

Since complex exponentials are eigenfunctions of linear time-invariant (LTI) systems , calculating the output of an LTI system given s t as an input amounts to simple multiplication, where H s is the eigenvalue corresponding to s. As shown in the figure, a simple exponential input would yield the output

y t H s s t

Using this and the fact that is linear, calculating y t for combinations of complex exponentials is also straightforward.

c 1 s 1 t c 2 s 2 t c 1 H s 1 s 1 t c 2 H s 2 s 2 t n c n s n t n c n H s n s n t

The action of H on an input such as those in the two equations above is easy to explain. independently scales each exponential component s n t by a different complex number H s n . As such, if we can write a function f t as a combination of complex exponentials it allows us to easily calculate the output of a system.

Now, we will look to use the power of complex exponentials to see how we may represent arbitrary signals in terms of a set of simpler functions bysuperposition of a number of complex exponentials. Below we will present the Continuous-Time Fourier Transform (CTFT), commonly referred to as just the Fourier Transform (FT). Because theCTFT deals with nonperiodic signals, we must find a way to include all real frequencies in thegeneral equations.For the CTFT we simply utilize integration over real numbers rather than summation over integers in order to express the aperiodic signals.

Fourier transform synthesis

Joseph Fourier demonstrated that an arbitrary s t can be written as a linear combination of harmonic complex sinusoids

s t n c n j ω 0 n t
where ω 0 2 T is the fundamental frequency. For almost all s t of practical interest, there exists c n to make [link] true. If s t is finite energy ( s t L 0 T 2 ), then the equality in [link] holds in the sense of energy convergence; if s t is continuous, then [link] holds pointwise. Also, if s t meets some mild conditions (the Dirichlet conditions), then [link] holds pointwise everywhere except at points of discontinuity.

The c n - called the Fourier coefficients - tell us "how much" of the sinusoid j ω 0 n t is in s t . The formula shows s t as a sum of complex exponentials, each of which is easily processed by an LTI system (since it is an eigenfunction of every LTI system). Mathematically, it tells us that the set ofcomplex exponentials n n j ω 0 n t form a basis for the space of T-periodic continuous time functions.

Equations

Now, in order to take this useful tool and apply it to arbitrary non-periodic signals, we will have to delve deeper into the use of the superposition principle. Let s T ( t ) be a periodic signal having period T . We want to consider what happens to this signal's spectrum as the period goes to infinity. We denote the spectrum for any assumed value of the period by c n ( T ) . We calculate the spectrum according to the Fourier formula for a periodic signal, known as the Fourier Series (for more on this derivation, see the section on Fourier Series .)

c n = 1 T 0 T s ( t ) exp ( - ı ω 0 t ) d t
where ω 0 = T and where we have used a symmetric placement of the integration interval about the origin for subsequent derivational convenience. We vary the frequency index n proportionally as we increase the period. Define making the corresponding Fourier Series
s T ( t ) = - f ( t ) exp ( ı ω 0 t ) 1 T )
As the period increases, the spectral lines become closer together, becoming a continuum. Therefore,
lim T s T ( t ) s ( t ) = - S ( f ) exp ( ı ω 0 t ) d f
with
S ( f ) = - s ( t ) exp ( - ı ω 0 t ) d t

Continuous-time fourier transform

Ω t f t Ω t

Inverse ctft

f t 1 2 Ω Ω Ω t

It is not uncommon to see the above formula written slightly different. One of themost common differences is the way that the exponential is written. The above equations use the radialfrequency variable Ω in the exponential, where Ω 2 f , but it is also common to include the more explicit expression, 2 f t , in the exponential. Click here for an overview of the notation used in Connexion's DSP modules.

We know from Euler's formula that cos ( ω t ) + sin ( ω t ) = 1 - j 2 e j ω t + 1 + j 2 e - j ω t .

Ctft definition demonstration

CTFTDemo
Interact (when online) with a Mathematica CDF demonstrating Continuous Time Fourier Transform. To Download, right-click and save as .cdf.

Example problems

Find the Fourier Transform (CTFT) of the function

f t α t t 0 0

In order to calculate the Fourier transform, all we need to use is [link] , complex exponentials , and basic calculus.

Ω t f t Ω t t 0 α t Ω t t 0 t α Ω 0 -1 α Ω
Ω 1 α Ω

Find the inverse Fourier transform of the ideal lowpass filter defined by

X Ω 1 Ω M 0

Here we will use [link] to find the inverse FT given that t 0 .

x t 1 2 Ω M M Ω t Ω w 1 2 Ω t 1 t M t
x t M sinc M t

Fourier transform summary

Because complex exponentials are eigenfunctions of LTI systems, it is often useful to represent signals using a set of complex exponentials as a basis. The continuous time Fourier series synthesis formula expresses a continuous time, periodic function as the sum of continuous time, discrete frequency complex exponentials.

f t n c n j ω 0 n t
The continuous time Fourier series analysis formula gives the coefficients of the Fourier series expansion.
c n 1 T t T 0 f t j ω 0 n t
In both of these equations ω 0 2 T is the fundamental frequency.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Dspa. OpenStax CNX. May 18, 2010 Download for free at http://cnx.org/content/col10599/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Dspa' conversation and receive update notifications?

Ask