<< Chapter < Page Chapter >> Page >

Wiskunde

Graad 5

Gewone breuke en desimale breuke

Module 35

Om gewone breuke te herken en te klassifiseer

Aktiwiteit 1:

Om gewone breuke te herken en te klassifiseer ten einde hulle te vergelyk [lu 1.3.2]

VERWANTSKAPSTEKENS (<;>; =)

1. Vergelyk die volgende breuke en vul dan<;>of = in:

1.1 3 5 size 12{ { { size 8{3} } over { size 8{5} } } } {} 7 10 size 12{ { { size 8{7} } over { size 8{"10"} } } } {}

1.2 1 3 size 12{ { { size 8{1} } over { size 8{3} } } } {} 1 4 size 12{ { { size 8{1} } over { size 8{4} } } } {}

1.3 5 8 size 12{ { { size 8{5} } over { size 8{8} } } } {} 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {}

1.4 1 7 size 12{ { { size 8{1} } over { size 8{7} } } } {} 1 5 size 12{ { { size 8{1} } over { size 8{5} } } } {}

1.5 3 4 size 12{ { { size 8{3} } over { size 8{4} } } } {} 6 8 size 12{ { { size 8{6} } over { size 8{8} } } } {}

1.6 3 8 size 12{ { { size 8{3} } over { size 8{8} } } } {} 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {}

1.7 3 4 size 12{ { { size 8{3} } over { size 8{4} } } } {} 9 12 size 12{ { { size 8{9} } over { size 8{"12"} } } } {}

1.8 3 5 size 12{ { { size 8{3} } over { size 8{5} } } } {} 7 10 size 12{ { { size 8{7} } over { size 8{"10"} } } } {}

1.9 2 11 size 12{ { { size 8{2} } over { size 8{"11"} } } } {} 1 12 size 12{ { { size 8{1} } over { size 8{"12"} } } } {}

1.10 12 12 size 12{ { { size 8{"12"} } over { size 8{"12"} } } } {} 9 9 size 12{ { { size 8{9} } over { size 8{9} } } } {}

2. Vergelyk weer die volgende breuke en omkring dan die grootste een in elk van die volgende:

2.1 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {} ; 3 4 size 12{ { { size 8{3} } over { size 8{4} } } } {}

2.2 2 3 size 12{ { { size 8{2} } over { size 8{3} } } } {} ; 3 6 size 12{ { { size 8{3} } over { size 8{6} } } } {}

2.3 3 5 size 12{ { { size 8{3} } over { size 8{5} } } } {} ; 9 10 size 12{ { { size 8{9} } over { size 8{"10"} } } } {}

2.4 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {} ; 2 6 size 12{ { { size 8{2} } over { size 8{6} } } } {}

2.5 3 8 size 12{ { { size 8{3} } over { size 8{8} } } } {} ; 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {}

2.6 4 5 size 12{ { { size 8{4} } over { size 8{5} } } } {} ; 4 10 size 12{ { { size 8{4} } over { size 8{"10"} } } } {}

Klasbespreking

HOE kan ons bogenoemde Wiskundig bepaal as ons nie ’n diagram het om na te kyk nie?

3. In die volgende aktiwiteit sal jy sien hoe belangrik jou kennis van ekwivalente breuke is, want as jy dit onder die knie het, is dit sommer kinderspeletjies om die breuke met mekaar te vergelyk.

Gebruik die reël soos julle dit in jul klasbespreking bepaal het, en vul<;>of = in:

3.1 3 5 size 12{ { { size 8{3} } over { size 8{5} } } } {} 7 15 size 12{ { { size 8{7} } over { size 8{"15"} } } } {}

3.2 7 11 size 12{ { { size 8{7} } over { size 8{"11"} } } } {} 13 22 size 12{ { { size 8{"13"} } over { size 8{"22"} } } } {}

3.3 5 9 size 12{ { { size 8{5} } over { size 8{9} } } } {} 15 27 size 12{ { { size 8{"15"} } over { size 8{"27"} } } } {}

3.4 5 6 size 12{ { { size 8{5} } over { size 8{6} } } } {} 20 24 size 12{ { { size 8{"20"} } over { size 8{"24"} } } } {}

4. Gebruik nou jul kennis en vul in:<;>of = :

4.1 4 5 size 12{ { { size 8{4} } over { size 8{5} } } } {} 5 6 size 12{ { { size 8{5} } over { size 8{6} } } } {}

4.2 2 3 size 12{ { { size 8{2} } over { size 8{3} } } } {} 4 5 size 12{ { { size 8{4} } over { size 8{5} } } } {}

4.3 5 6 size 12{ { { size 8{5} } over { size 8{6} } } } {} 7 9 size 12{ { { size 8{7} } over { size 8{9} } } } {}

4.4 7 8 size 12{ { { size 8{7} } over { size 8{8} } } } {} 6 7 size 12{ { { size 8{6} } over { size 8{7} } } } {}

Aktiwiteit 2:

Om te bereken deur seleksie en gebruik van bewerkings [lu 1.8.3]

1. Verdeel in groepe van drie. Kyk of julle die volgende probleme kan oplos.

1.1 Gizelle en haar tweelingbroer, Donovan, kry elke maand sakgeld. Gizelle spaar twee sesdes van haar sakgeld. Donovan spaar vier negendes van syne. Wie spaar die meeste as hul ewe veel sakgeld kry?

1.2 Ma bak graag pannekoeke. Sy gee ‘n driekwart aan Jake en sy vriende om te eet. Hierna bak Ma dieselfde hoeveelheid pannekoeke. Sy stuur vier vyfdes daarvan skool toe vir Dimitri en sy maats om te geniet. Wie het die meeste pannekoeke by Ma gekry?

1.3 Vusi en Sipho skryf dieselfde toets. Vusi het vier sewendes van die vrae reg beantwoord. Sipho het vyf agstes korrek. Wie het die beste in die toets gevaar?

1.4 Twee taxi’s vervoer passasiers tussen Johannesburg en Pretoria. Die een taxi is twee derdes vol, terwyl die ander een driekwart vol is. Watter taxi vervoer die meeste passasiers?

2. Elke groep kry nou die geleentheid om hul oplossings vir die probleme met die res van die klas te deel.

3. Hou ‘n klasgesprek oor die beste metode om dié soort probleem op te los.

Nog ’n KOPKRAPPER!

Rangskik die volgende breuke van groot na klein:

2 3 size 12{ { { size 8{2} } over { size 8{3} } } } {} ; 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {} ; 5 6 size 12{ { { size 8{5} } over { size 8{6} } } } {} ; 7 9 size 12{ { { size 8{7} } over { size 8{9} } } } {}

VEREENVOUDIGING

Het jy geweet?

Om ’n breuk in sy eenvoudigste vorm te skryf, deel ons die teller en die noemer deur dieselfde getal. Die waarde van die breuk verander nie, want ons deel eintlik die breuk deur 1.

Bv. 18 24 size 12{ { {"18"} over {"24"} } } {}
6
6
= 3 4 size 12{ { {3} over {4} } } {} en 10 15 size 12{ { {"10"} over {"15"} } } {}
5
5
= 2 3 size 12{ { {2} over {3} } } {}

Aktiwiteit 3:

Om gewone breuke te vereenvoudig [lu 1.3.2]

1. Noudat jy weet hoe om ‘n breuk te vereenvoudig, kyk of jy die volgende tabel kan voltooi:

Breuk deur Vereenvoudig
Bv. 18 27 size 12{ { { size 8{"18"} } over { size 8{"27"} } } } {} 9 9 size 12{ { { size 8{9} } over { size 8{9} } } } {} 2 3 size 12{ { { size 8{2} } over { size 8{3} } } } {}
1.1 40 45 size 12{ { { size 8{"40"} } over { size 8{"45"} } } } {} .................. ..................
1.2 15 25 size 12{ { { size 8{"15"} } over { size 8{"25"} } } } {} .................. ..................
1.3 12 16 size 12{ { { size 8{"12"} } over { size 8{"16"} } } } {} .................. ..................
1.4 24 30 size 12{ { { size 8{"24"} } over { size 8{"30"} } } } {} .................. ..................
1.5 48 54 size 12{ { { size 8{"48"} } over { size 8{"54"} } } } {} .................. ..................

Aktiwiteit 4:

Om ‘n reeks tegnieke te gebruik om berekeninge te doen [lu 1.10.3]

1. Kom ons rond nou gemengde getalle af tot die naaste heelgetal. Verbind die getal in kolom A met die korrekte antwoord in kolom B.

Questions & Answers

what is defense mechanism
Chinaza Reply
what is defense mechanisms
Chinaza
I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Wiskunde graad 5. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10993/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Wiskunde graad 5' conversation and receive update notifications?

Ask