<< Chapter < Page Chapter >> Page >
  • State the definition of the definite integral.
  • Explain the terms integrand, limits of integration, and variable of integration.
  • Explain when a function is integrable.
  • Describe the relationship between the definite integral and net area.
  • Use geometry and the properties of definite integrals to evaluate them.
  • Calculate the average value of a function.

In the preceding section we defined the area under a curve in terms of Riemann sums:

A = lim n i = 1 n f ( x i * ) Δ x .

However, this definition came with restrictions. We required f ( x ) to be continuous and nonnegative. Unfortunately, real-world problems don’t always meet these restrictions. In this section, we look at how to apply the concept of the area under the curve to a broader set of functions through the use of the definite integral.

Definition and notation

The definite integral generalizes the concept of the area under a curve. We lift the requirements that f ( x ) be continuous and nonnegative, and define the definite integral as follows.

Definition

If f ( x ) is a function defined on an interval [ a , b ] , the definite integral    of f from a to b is given by

a b f ( x ) d x = lim n i = 1 n f ( x i * ) Δ x ,

provided the limit exists. If this limit exists, the function f ( x ) is said to be integrable on [ a , b ] , or is an integrable function    .

The integral symbol in the previous definition should look familiar. We have seen similar notation in the chapter on Applications of Derivatives , where we used the indefinite integral symbol (without the a and b above and below) to represent an antiderivative. Although the notation for indefinite integrals may look similar to the notation for a definite integral, they are not the same. A definite integral is a number. An indefinite integral is a family of functions. Later in this chapter we examine how these concepts are related. However, close attention should always be paid to notation so we know whether we’re working with a definite integral or an indefinite integral.

Integral notation goes back to the late seventeenth century and is one of the contributions of Gottfried Wilhelm Leibniz , who is often considered to be the codiscoverer of calculus, along with Isaac Newton. The integration symbol ∫ is an elongated S, suggesting sigma or summation. On a definite integral, above and below the summation symbol are the boundaries of the interval, [ a , b ] . The numbers a and b are x -values and are called the limits of integration    ; specifically, a is the lower limit and b is the upper limit. To clarify, we are using the word limit in two different ways in the context of the definite integral. First, we talk about the limit of a sum as n . Second, the boundaries of the region are called the limits of integration .

We call the function f ( x ) the integrand    , and the dx indicates that f ( x ) is a function with respect to x , called the variable of integration    . Note that, like the index in a sum, the variable of integration is a dummy variable , and has no impact on the computation of the integral. We could use any variable we like as the variable of integration:

a b f ( x ) d x = a b f ( t ) d t = a b f ( u ) d u

Questions & Answers

what are components of cells
ofosola Reply
twugzfisfjxxkvdsifgfuy7 it
Sami
58214993
Sami
what is a salt
John
the difference between male and female reproduction
John
what is computed
IBRAHIM Reply
what is biology
IBRAHIM
what is the full meaning of biology
IBRAHIM
what is biology
Jeneba
what is cell
Kuot
425844168
Sami
what is biology
Inenevwo
what is cytoplasm
Emmanuel Reply
structure of an animal cell
Arrey Reply
what happens when the eustachian tube is blocked
Puseletso Reply
what's atoms
Achol Reply
discuss how the following factors such as predation risk, competition and habitat structure influence animal's foraging behavior in essay form
Burnet Reply
cell?
Kuot
location of cervical vertebra
KENNEDY Reply
What are acid
Sheriff Reply
define biology infour way
Happiness Reply
What are types of cell
Nansoh Reply
how can I get this book
Gatyin Reply
what is lump
Chineye Reply
what is cell
Maluak Reply
what is biology
Maluak
what is vertibrate
Jeneba
what's cornea?
Majak Reply
what are cell
Achol
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 8

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Calculus volume 2. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11965/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 2' conversation and receive update notifications?

Ask