<< Chapter < Page Chapter >> Page >

Metals, semi-metals and non-metals

The elements in the Periodic Table can also be divided according to whether they are metals , semi-metals or non-metals . On the right hand side of the Periodic Table you can draw a 'zigzag' line (This line starts with Boron (B) and goes down to Polonium (Po)). This line separates all the elements that are metals from those that are non-metals. Metals are found on the left of the line, and non-metals are those on the right. Along the line you find the semi-metals. Metals, semi-metals and non-metals all have their own specific properties.

Metals

Examples of metals include copper (Cu), zinc (Zn), gold (Au) and silver (Ag). On the Periodic Table, the metals are on the left of the zig-zag line. There are a large number of elements that are metals. The following are some of the properties of metals:

  • Thermal conductors Metals are good conductors of heat. This makes them useful in cooking utensils such as pots and pans.
  • Electrical conductors Metals are good conductors of electricity. Metals can be used in electrical conducting wires.
  • Shiny metallic lustre Metals have a characteristic shiny appearance and so are often used to make jewellery.
  • Malleable This means that they can be bent into shape without breaking.
  • Ductile Metals (such as copper) can be stretched into thin wires, which can then be used to conduct electricity.
  • Melting point Metals usually have a high melting point and can therefore be used to make cooking pots and other equipment that needs to become very hot, without being damaged.

You can see how the properties of metals make them very useful in certain applications.

Group work : looking at metals

  1. Collect a number of metal items from your home or school. Some examples are listed below:
    • hammer
    • wire
    • cooking pots
    • jewellery
    • nails
    • coins
  2. In groups of 3-4, combine your collection of metal objects.
  3. What is the function of each of these objects?
  4. Discuss why you think metal was used to make each object. You should consider the properties of metals when you answer this question.

Non-metals

In contrast to metals, non-metals are poor thermal conductors, good electrical insulators (meaning that they do not conduct electrical charge) and are neither malleable nor ductile. The non-metals are found on the right hand side of the Periodic Table, and include elements such as sulphur (S), phosphorus (P), nitrogen (N) and oxygen (O).

Semi-metals

Semi-metals have mostly non-metallic properties. One of their distinguishing characteristics is that their conductivity increases as their temperature increases. This is the opposite of what happens in metals. The semi-metals include elements such as silicon (Si) and germanium (Ge). Notice where these elements are positioned in the Periodic Table.

Electrical conductors, semi-conductors and insulators

An electrical conductor is a substance that allows an electrical current to pass through it. Electrical conductors are usually metals. Copper is one of the best electrical conductors, and this is why it is used to make conducting wire. In reality, silver actually has an even higher electrical conductivity than copper, but because silver is so expensive, it is not practical to use it for electrical wiring because such large amounts are needed. In the overhead power lines that we see above us, aluminium is used. The aluminium usually surrounds a steel core which adds tensile strength to the metal so that it doesn't break when it is stretched across distances. Occasionally gold is used to make wire, not because it is a particularly good conductor, but because it is very resistant to surface corrosion. Corrosion is when a material starts to deteriorate at the surface because of its reactions with the surroundings, for example oxygen and water in the air.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Siyavula textbooks: grade 10 physical science. OpenStax CNX. Aug 29, 2011 Download for free at http://cnx.org/content/col11245/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: grade 10 physical science' conversation and receive update notifications?

Ask