<< Chapter < Page Chapter >> Page >

This appendix contains outline proofs and derivations for the theorems and formulas given in early part of Chapter: The Scaling Function and Scaling Coefficients, Wavelet and Wavelet Coefficients . They are not intended to be completeor formal, but they should be sufficient to understand the ideas behind why a result is true and to give some insight into its interpretation aswell as to indicate assumptions and restrictions.

Proof 1 The conditions given by [link] and [link] can be derived by integrating both sides of

φ ( x ) = n h ( n ) M φ ( M x - n )

and making the change of variables y = M x

φ ( x ) d x = n h ( n ) M φ ( M x - n ) d x

and noting the integral is independent of translation which gives

= n h ( n ) M φ ( y ) 1 M d y .

With no further requirements other than φ L 1 to allow the sum and integral interchange and φ ( x ) d x 0 , this gives [link] as

n h ( n ) = M

and for M = 2 gives [link] . Note this does not assume orthogonality nor any specific normalization of φ ( t ) and does not even assume M is an integer.

This is the most basic necessary condition for the existence of φ ( t ) and it has the fewest assumptions or restrictions.

Proof 2 The conditions in [link] and [link] are a down-sampled orthogonality of translates by M of the coefficients which results from the orthogonality of translates of the scaling function given by

φ ( x ) φ ( x - m ) d x = E δ ( m )

in [link] . The basic scaling equation [link] is substituted for both functions in [link] giving

n h ( n ) M φ ( M x - n ) k h ( k ) M φ ( M x - M m - k ) d x = E δ ( m )

which, after reordering and a change of variable y = M x , gives

n k h ( n ) h ( k ) φ ( y - n ) φ ( y - M m - k ) d y = E δ ( m ) .

Using the orthogonality in [link] gives our result

n h ( n ) h ( n - M m ) = δ ( m )

in [link] and [link] . This result requires the orthogonality condition [link] , M must be an integer, and any non-zero normalization E may be used.

Proof 3 (Corollary 2) The result that

n h ( 2 n ) = n h ( 2 n + 1 ) = 1 / 2

in [link] or, more generally

n h ( M n ) = n h ( M n + k ) = 1 / M

is obtained by breaking [link] for M = 2 into the sum of the even and odd coefficients.

n h ( n ) = k h ( 2 k ) + k h ( 2 k + 1 ) = K 0 + K 1 = 2 .

Next we use [link] and sum over n to give

n k h ( k + 2 n ) h ( k ) = 1

which we then split into even and odd sums and reorder to give:

n k h ( 2 k + 2 n ) h ( 2 k ) + k h ( 2 k + 1 + 2 n ) h ( 2 k + 1 ) = k n h ( 2 k + 2 n ) h ( 2 k ) + k n h ( 2 k + 1 + 2 n ) h ( 2 k + 1 ) = k K 0 h ( 2 k ) + k K 1 h ( 2 k + 1 ) = K 0 2 + K 1 2 = 1 .

Solving [link] and [link] simultaneously gives K 0 = K 1 = 1 / 2 and our result [link] or [link] for M = 2 .

If the same approach is taken with [link] and [link] for M = 3 , we have

n x ( n ) = n x ( 3 n ) + n x ( 3 n + 1 ) + n x ( 3 n + 2 ) = 3

which, in terms of the partial sums K i , is

n x ( n ) = K 0 + K 1 + K 2 = 3 .

Using the orthogonality condition [link] as was done in [link] and [link] gives

K 0 2 + K 1 2 + K 2 2 = 1 .

Equation [link] and [link] are simultaneously true if and only if K 0 = K 1 = K 2 = 1 / 3 . This process is valid for any integer M and any non-zero normalization.

Proof 3 If the support of φ ( x ) is [ 0 , N - 1 ] , from the basic recursion equation with support of h ( n ) assumed as [ N 1 , N 2 ] we have

φ ( x ) = n = N 1 N 2 h ( n ) 2 φ ( 2 x - n )

where the support of the right hand side of [link] is [ N 1 / 2 , ( N - 1 + N 2 ) / 2 ) . Since the support of both sides of [link] must be the same, the limits on the sum, or, the limits on the indices of the non zero h ( n ) are such that N 1 = 0 and N 2 = N , therefore, the support of h ( n ) is [ 0 , N - 1 ] .

Proof 4 First define the autocorrelation function

a ( t ) = φ ( x ) φ ( x - t ) d x

and the power spectrum

A ( ω ) = a ( t ) e - j ω t d t = φ ( x ) φ ( x - t ) d x e - j ω t d t

which after changing variables, y = x - t , and reordering operations gives

Questions & Answers

the definition for anatomy and physiology
Watta Reply
what is microbiology
Agebe Reply
What is a cell
Odelana Reply
what is cell
Mohammed
how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Intermodular linking test collection. OpenStax CNX. Sep 09, 2015 Download for free at http://legacy.cnx.org/content/col11841/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Intermodular linking test collection' conversation and receive update notifications?

Ask