<< Chapter < Page Chapter >> Page >

Let me just close with a few robotics examples because they’re always fun, and we just have these videos. This video was a work of Ziko Coulter and Peter Abiel, which is a PhD student here. They were working getting a robot dog to climb over difficult rugged terrain. Using a reinforcement learning algorithm, they applied an approach that’s similar to a value function approximation approach, not quite but similar. They allowed the robot dog to sort of plan ahead multiple steps, and carefully choose his footsteps and traverse rugged terrain. This is really state of the art in terms of what can you get a robotic dog to do. Here’s another fun one. It turns out that wheeled robots are very fuel-efficient. Cars and trucks are the most fuel-efficient robots in the world almost. Cars and trucks are very fuel-efficient, but the bigger robots have the ability to traverse more rugged terrain. So this is a robot – this is actually a small scale mockup of a larger vehicle built by Lockheed Martin, but can you come up with a vehicle that has wheels and has the fuel efficiency of wheeled robots, but also has legs so it can traverse obstacles. Again, using a reinforcement algorithm to design a controller for this robot to make it traverse obstacles, and somewhat complex gaits that would be very hard to design by hand, but by choosing a reward function, tell the robot this is a plus one reward that’s top of the goal, and a few other things, it learns these sorts of policies automatically.

Last couple fun ones – I’ll show you a couple last helicopter videos. This is the work of again PhD students here, Peter Abiel and Adam Coates who have been working on autonomous flight. I’ll just let you watch. I’ll just show you one more.

Student: [Inaudible] do this with a real helicopter [inaudible]?

Instructor (Andrew Ng) :Not a full-size helicopter. Only small radio control helicopters.

Student: [Inaudible].

Instructor (Andrew Ng) :Full-size helicopters are the wrong design for this. You shouldn’t do this on a full-size helicopter. Many full-size helicopters would fall apart if you tried to do this. Let’s see. There’s one more.

Student: Are there any human [inaudible]?

Instructor (Andrew Ng) :Yes, there are very good human pilots that can. This is just one more maneuver. That was kind of fun. So this is the work of Peter Abiel and Adam Coates. So that was it. That was all the technical material I wanted to present in this class. I guess you’re all experts on machine learning now. Congratulations. And as I hope you’ve got the sense through this class that this is one of the technologies that’s really having a huge impact on science in engineering and industry. As I said in the first lecture, I think many people use machine learning algorithms dozens of times a day without even knowing about it.

Based on the projects you’ve done, I hope that most of you will be able to imagine yourself going out after this class and applying these things to solve a variety of problems. Hopefully, some of you will also imagine yourselves writing research papers after this class, be it on a novel way to do machine learning, or on some way of applying machine learning to a problem that you care about. In fact, looking at project milestones, I’m actually sure that a large fraction of the projects in this class will be publishable, so I think that’s great. I guess many of you will also go industry, make new products, and make lots of money using learning algorithms. Remember me if that happens. One of the things I’m excited about is through research or industry, I’m actually completely sure that the people in this class in the next few months will apply machine learning algorithms to lots of problems in industrial management, and computer science, things like optimizing computer architectures, network security, robotics, computer vision, to problems in computational biology, to problems in aerospace, or understanding natural language, and many more things like that.

So right now I have no idea what all of you are going to do with the learning algorithms you learned about, but every time as I wrap up this class, I always feel very excited, and optimistic, and hopeful about the sorts of amazing things you’ll be able to do. One final thing, I’ll just give out this handout. One final thing is that machine learning has grown out of a larger literature on the AI where this desire to build systems that exhibit intelligent behavior and machine learning is one of the tools of AI, maybe one that’s had a disproportionately large impact, but there are many other ideas in AI that I hope you go and continue to learn about. Fortunately, Stanford has one of the best and broadest sets of AI classes, and I hope that you take advantage of some of these classes, and go and learn more about AI, and more about other fields which often apply learning algorithms to problems in vision, problems in natural language processing in robotics, and so on.

So the handout I just gave out has a list of AI related courses. Just running down very quickly, I guess, CS221 is an overview that I teach. There are a lot of robotics classes also: 223A, 225A, 225B – many robotics class. There are so many applications of learning algorithms to robotics today. 222 and 227 are knowledge representation and reasoning classes. 228 – of all the classes on this list, 228, which Daphne Koller teaches, is probably closest in spirit to 229. This is one of the classes I highly recommend to all of my PhD students as well.

Many other problems also touch on machine learning. On the next page, courses on computer vision, speech recognition, natural language processing, various tools that aren’t just machine learning, but often involve machine learning in many ways. Other aspects of AI, multi-agent systems taught by [inaudible]. EE364A is convex optimization. It’s a class taught by Steve Boyd, and convex optimization came up many times in this class. If you want to become really good at it, EE364 is a great class. If you’re interested in project courses, I also teach a project class next quarter where we spend the whole quarter working on research projects.

So I hope you go and take some more of those classes. In closing, let me just say this class has been really fun to teach, and it’s very satisfying to me personally when we set these insanely difficult hallmarks, and then we’d see a solution, and I’d be like, “Oh my god. They actually figured that one out.” It’s actually very satisfying when I see that. Or looking at the milestones, I often go, “Wow, that’s really cool. I bet this would be publishable.” So I hope you take what you’ve learned, go forth, and do amazing things with learning algorithms. I know this is a heavy workload class, so thank you all very much for the hard work you’ve put into this class, and the hard work you’ve put into learning this material, and thank you very much for having been students in this class.

[End of Audio]

Duration: 78 minutes

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Machine learning. OpenStax CNX. Oct 14, 2013 Download for free at http://cnx.org/content/col11500/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Machine learning' conversation and receive update notifications?

Ask